Research on local path planning of unmanned vehicles based on improved driving risk field

计算机科学 MATLAB语言 运动规划 领域(数学) 弹道 势场 模拟 人工智能 机器人 数学 天文 地球物理学 操作系统 物理 地质学 纯数学
作者
Pan Liu,Yongqiang Chang,Jianping Gao,Guoguo Du,SU Zhi-jun,Minghui Liu,Wenju Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-78025-x
摘要

With the rapid development of the field of unmanned vehicles, motion planning based on field theory has become a research hotspot. A driving risk field is an effective means to evaluate driving safety in complex environments, and this method is frequently used in autonomous vehicle motion planning. However, existing risk field models are not sufficiently accurate for describing driving risks, often disregarding the size and driving direction restrictions of vehicles, amongst other aspects. Considering the aforementioned problems, this research improves and establishes a new risk field model, including a motor vehicle risk field, a road risk field and a pedestrian risk field. Simultaneously, it proposes a solution to the local minimum point problem caused by different scenarios and verifies the simulation in MATLAB. Finally, the Prescan and MATLAB/Simulink co-simulation platform is used to compare the traditional and improved field theory algorithms. Results show that the trajectory generated by the improved field theory algorithm is smoother, and the fluctuation amplitude and number of parameters, such as heading angle, yaw rate and roll angle during driving, are significantly reduced. These outcomes improve the stability of driving whilst smoothly reaching the target point, demonstrating high application potential for the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青阳发布了新的文献求助10
刚刚
SciGPT应助热爱生活采纳,获得10
刚刚
茸茸茸完成签到,获得积分10
刚刚
帆帆帆发布了新的文献求助10
1秒前
Hello应助Rex采纳,获得10
1秒前
1秒前
干净初雪发布了新的文献求助10
1秒前
goodbuhui发布了新的文献求助10
2秒前
嘿嘿应助小小威采纳,获得10
2秒前
饼饼完成签到,获得积分10
2秒前
DX完成签到,获得积分10
2秒前
2秒前
FashionBoy应助辛束采纳,获得10
3秒前
3秒前
土豆炖牛腩完成签到,获得积分20
3秒前
九歌发布了新的文献求助10
4秒前
4秒前
ss发布了新的文献求助10
4秒前
YDX发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助夏夏采纳,获得10
4秒前
卯一发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科研通AI6应助侯康采纳,获得10
6秒前
CC完成签到 ,获得积分10
7秒前
在下小李发布了新的文献求助10
7秒前
科研通AI6应助奔奔采纳,获得10
7秒前
00关注了科研通微信公众号
7秒前
Georges-09发布了新的文献求助10
8秒前
8秒前
情怀应助萧一采纳,获得10
8秒前
汉堡包应助My采纳,获得30
8秒前
Hello应助lf采纳,获得10
9秒前
9秒前
没有昵称发布了新的文献求助10
9秒前
海棠花完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827