Pioneering quantitative assessment of questioning competency in elementary pre-service teachers using Likert-scale questions

利克特量表 比例(比率) 心理学 数学教育 多元方法论 定性研究 教师教育 半结构化面试 编码(社会科学) 定性性质 医学教育 教育学 计算机科学 医学 发展心理学 物理 量子力学 社会科学 统计 数学 机器学习 社会学
作者
Jianlan Wang,Yuanhua Wang,Shahin Shawn Kashef
出处
期刊:International Journal of Science Education [Informa]
卷期号:: 1-24
标识
DOI:10.1080/09500693.2024.2439141
摘要

In pre-service teacher (PST) education, developing effective instructional practices like questioning is a crucial learning objective. Assessing PSTs' questioning competencies is essential, yet traditional qualitative methods (e.g., discourse analysis) limit large-scale analysis within PST preparation programs. Previously, we addressed this challenge by designing and validating instruments, including a video-coding scheme and free-response questions, to assess novice teachers' competencies in asking effective guiding questions to address student difficulties. We established a link between their questioning practices and performance on free-response questions. Building upon these efforts, this study aims to further enhance assessment efficiency by transforming pre-validated free-response questions into Likert-scale questions. In this approach, respondents rate provided options that represent various levels of questioning competencies, rather than providing their answers. Over two semesters, we administered Likert-scale questions to more than 100 PSTs each term to evaluate the feasibility and validity of this method. We identified five categories of options for Likert-scale questions and developed empirical equations to derive Pedagogical Content Knowledge in Questioning (PCK-Q) from the collected ratings. The findings support the use of Likert-scale questions as a promising tool for large-scale assessment of PCK-Q in PST education. We also discussed the application of Likert-scale questions in PST preparation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的宛白完成签到,获得积分20
刚刚
gcc应助小小杜采纳,获得20
刚刚
小马甲应助黑熊安巴尼采纳,获得10
刚刚
1秒前
bkagyin应助junzilan采纳,获得10
1秒前
Young完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
daniel完成签到,获得积分10
3秒前
不爱学习的小渣渣完成签到,获得积分10
3秒前
3秒前
情怀应助欢喜的毛豆采纳,获得10
4秒前
勖勖发布了新的文献求助10
4秒前
自然的飞鸟完成签到,获得积分0
4秒前
5秒前
黑熊安巴尼完成签到,获得积分20
6秒前
8秒前
yiyiyi完成签到 ,获得积分10
9秒前
9秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
9秒前
Zezezee完成签到,获得积分10
10秒前
将离发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助10
11秒前
kingmin应助yijiubingshi采纳,获得10
11秒前
11秒前
12秒前
hxn完成签到,获得积分10
12秒前
奋斗尔安完成签到,获得积分10
12秒前
沙拉发布了新的文献求助10
13秒前
hajy完成签到 ,获得积分10
13秒前
单纯寒凝发布了新的文献求助10
13秒前
13秒前
junzilan发布了新的文献求助10
13秒前
田様应助卡卡采纳,获得10
14秒前
Zezezee发布了新的文献求助10
16秒前
复杂的问玉完成签到,获得积分20
17秒前
18秒前
18秒前
睡睡完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808