CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI Reconstruction

计算机科学 一致性(知识库) 人工智能
作者
Liping Zhang,Xiaobo Li,Weitian Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/jbhi.2024.3516758
摘要

Undersampling -space data in magnetic resonance imaging (MRI) reduces scan time but pose challenges in image reconstruction. Considerable progress has been made in reconstructing accelerated MRI. However, restoration of high-frequency image details in highly undersampled data remains challenging. To address this issue, we propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction. CAMP-Net leverages complementary multi-prior knowledge and multi-slice information from various domains to enhance reconstruction quality. Specifically, CAMP-Net comprises three interleaved modules for image enhancement, -space restoration, and calibration consistency, respectively. These modules jointly learn priors from data in image domain, -domain, and calibration region, respectively, in data-driven manner during each unrolled iteration. Notably, the encoded calibration prior knowledge extracted from auto-calibrating signals implicitly guides the learning of consistency-aware -space correlation for reliable interpolation of missing -space data. To maximize the benefits of image domain and -domain prior knowledge, the reconstructions are aggregated in a frequency fusion module, exploiting their complementary properties to optimize the trade-off between artifact removal and fine detail preservation. Additionally, we incorporate a surface data fidelity layer during the learning of -domain and calibration domain priors to prevent degradation of the reconstruction caused by padding-induced data imperfections. We evaluate the generalizability and robustness of our method on three large public datasets with varying acceleration factors and sampling patterns. The experimental results demonstrate that our method outperforms state-of-the-art approaches in terms of both reconstruction quality and mapping estimation, particularly in scenarios with high acceleration factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秘密完成签到,获得积分10
1秒前
无奈无招发布了新的文献求助10
1秒前
judd完成签到,获得积分10
3秒前
lu完成签到,获得积分10
3秒前
4秒前
XXX关注了科研通微信公众号
4秒前
5秒前
5秒前
Pyrene发布了新的文献求助10
5秒前
Spring发布了新的文献求助10
6秒前
AXEDW完成签到,获得积分10
6秒前
糖糖糖唐完成签到,获得积分10
6秒前
6秒前
小巧冬云完成签到,获得积分10
7秒前
完美世界应助dong采纳,获得10
8秒前
藏识发布了新的文献求助200
8秒前
9秒前
xxxwwwx完成签到,获得积分10
9秒前
顾矜应助mo采纳,获得10
10秒前
princekin完成签到,获得积分10
10秒前
10秒前
tuanheqi应助Summeryz920采纳,获得50
12秒前
大月发布了新的文献求助10
12秒前
orixero应助小顾老师采纳,获得10
12秒前
13秒前
nn完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
能干豆芽发布了新的文献求助20
16秒前
wang发布了新的文献求助10
16秒前
暮寻屿苗完成签到 ,获得积分10
16秒前
goodnight应助daqing1725采纳,获得30
17秒前
sclzl发布了新的文献求助10
17秒前
TranYan发布了新的文献求助10
17秒前
爆米花应助wu-sang采纳,获得10
17秒前
听见完成签到,获得积分10
18秒前
helly完成签到,获得积分10
18秒前
Elena发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552161
求助须知:如何正确求助?哪些是违规求助? 3128470
关于积分的说明 9378076
捐赠科研通 2827552
什么是DOI,文献DOI怎么找? 1554473
邀请新用户注册赠送积分活动 725481
科研通“疑难数据库(出版商)”最低求助积分说明 714915