A High‐Sensitivity, Broadband (1A,1B)‐3 Single‐Crystal Composite Ultrasonic Transducer

材料科学 超声波传感器 宽带 传感器 复合数 灵敏度(控制系统) 声学 光学 复合材料 电子工程 工程类 物理
作者
Lei Yu,Ziyan Gao,Guisheng Gan,Wei Bai,Yang Wei,Bing Wang,Xiaoting Yuan,Zewei Hou,Jiawang Hong,Shuxiang Dong
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202417084
摘要

Abstract Piezocomposite ultrasonic transducers (PUTs) are extensively used in diverse technological fields, however, PUTs based on conventional 1–3 piezocomposite containing only one type of piezo pillars have met a bottleneck in further performance enhancement. Herein, based on the [011]‐oriented relaxor ferroelectric Pb(In 1/3 Nb 2/3 )O 3 ‐Pb(Mg 1/3 Nb 2/3 )O 3 ‐PbTiO 3 (PIN‐PMN‐PT) crystal, a novel (1 A ,1 B )‐3 piezocomposite structure containing two types of single‐crystal pillars‐ high d 33 , k t pillars with square cross‐section (termed as 1 A ) and high dhgh pillars with rectangular cross‐section (termed as 1 B ), alternately arranging in epoxy resin and forming a 5 × 9 array are reported. The combination effect and synergistic action of two different piezo‐pillars in the piezocomposite notably broaden the working bandwidth, improve the sound sensitivity, and also produce a suppression effect to undesirable transverse vibration modes. Experimental results validate the performance enhancements of (1 A ,1 B )‐3 composite‐based PUT: the increases in –3 dB transmitting, receiving bandwidth, and receiving sensitivity are 71.4%, 28.6%, and 26.6%, respectively, in comparison to conventional 13 single‐crystal composite‐based PUT. Moreover, its hydrostatic figure of merit (HFOM) dhgh (=4084.9 × 10 −15 m 2 N −1 ) is 177.3% higher than that of commercial single crystal 13 piezocomposites. The proposed design strategy represents a promising development direction of next‐generation bandwidth and high‐sensitivity ultrasonic transducers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助可乐采纳,获得10
1秒前
医只兔完成签到,获得积分10
1秒前
1秒前
2秒前
小鱼鱼Fish完成签到,获得积分10
2秒前
2秒前
浅忆梦微凉完成签到,获得积分20
2秒前
YifanWang应助Mark_He采纳,获得20
2秒前
SciGPT应助Mark_He采纳,获得10
3秒前
3秒前
3秒前
qq完成签到,获得积分10
4秒前
隐形的皮卡丘完成签到 ,获得积分10
4秒前
5秒前
任性的老三完成签到,获得积分20
6秒前
qq发布了新的文献求助10
6秒前
代宇发布了新的文献求助10
6秒前
36456657应助nihao采纳,获得10
6秒前
6秒前
杰奥完成签到,获得积分10
7秒前
fishss完成签到,获得积分10
7秒前
hm发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助Lambda采纳,获得10
9秒前
科研通AI2S应助领衔的疯子采纳,获得10
9秒前
核桃花生奶兔完成签到 ,获得积分10
9秒前
10秒前
10秒前
香蕉觅云应助狼主采纳,获得10
10秒前
险胜应助欣欣采纳,获得10
11秒前
11秒前
11秒前
皮卡发布了新的文献求助10
12秒前
13秒前
attilio完成签到,获得积分10
14秒前
14秒前
14秒前
老鼠爱吃fish完成签到,获得积分10
14秒前
14秒前
Sunshine发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053