Evaluation of Prediction Performances of Deep Learning Models for the Aerodynamic Characteristics of Flettner Rotors

空气动力学 计算机科学 航空航天工程 人工智能 工程类
作者
Janghoon Seo,Jung Yoon Park,Julian K‐C.,Young‐Min Kim,Dong-Woo Park
出处
期刊:Polish Maritime Research [De Gruyter Open]
卷期号:31 (4): 4-20
标识
DOI:10.2478/pomr-2024-0046
摘要

Abstract This study investigates the prediction of the aerodynamic characteristics of Flettner rotors through three deep learning models. Various numbers of Flettner rotors, arrangements, and spin ratios are employed to consider these effects in the dataset. For the training of deep learning models, a dataset of aerodynamic force coefficients and flow fields is generated using Computational Fluid Dynamics (CFD). Three deep learning architectures (U-net, Encoder-Decoder, and Decoder models) are employed and trained to predict the aerodynamic characteristics of Flettner rotors. Three deep learning models are established through a training stage with a hyperparameter study and by altering the number of layers. The aerodynamic force coefficients and flow fields are predicted by established deep learning models and show small absolute errors compared to those from the CFD analysis. Moreover, predicted flow fields reflect the flow characteristics according to the difference of spin ratio and arrangement of Flettner rotors. In conclusion, the established deep learning models demonstrate rapid and robust predictions of aerodynamic force coefficients and flow fields for Flettner rotors under varying arrangements and spin ratios. Furthermore, a significant reduction in computational time is measured when comparing the analysis time of CFD simulations to the training and testing time of the deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助jia采纳,获得10
刚刚
超级的金毛完成签到,获得积分10
刚刚
yk发布了新的文献求助10
1秒前
1秒前
yc发布了新的文献求助10
2秒前
Dfish发布了新的文献求助10
2秒前
我没那么郝完成签到,获得积分10
3秒前
小云完成签到,获得积分10
4秒前
槐夏2466发布了新的文献求助10
4秒前
关灯发布了新的文献求助10
4秒前
5秒前
Sawyer应助nini采纳,获得10
5秒前
xeiwei应助nini采纳,获得10
5秒前
lz完成签到,获得积分10
5秒前
wjx发布了新的文献求助80
5秒前
7秒前
7秒前
超帅的心锁完成签到,获得积分20
8秒前
mUYangYu完成签到,获得积分10
8秒前
ttt完成签到,获得积分10
8秒前
上官若男应助bofu采纳,获得10
8秒前
殷超完成签到,获得积分0
9秒前
9秒前
11秒前
菜鸡完成签到,获得积分10
11秒前
11秒前
XJ发布了新的文献求助20
11秒前
乐乐应助齐昂采纳,获得10
12秒前
心动nofear发布了新的文献求助10
12秒前
wali完成签到 ,获得积分0
12秒前
12秒前
烟酒生发布了新的文献求助10
12秒前
于瑜与余完成签到,获得积分10
12秒前
13秒前
秋子发布了新的文献求助10
13秒前
11111111111完成签到,获得积分10
13秒前
14秒前
科研通AI5应助Spencer采纳,获得10
14秒前
木木彡发布了新的文献求助10
15秒前
我是老大应助bofu采纳,获得30
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300