空气动力学
计算机科学
航空航天工程
人工智能
工程类
作者
Janghoon Seo,Jung Yoon Park,Julian K‐C.,Young‐Min Kim,Dong-Woo Park
标识
DOI:10.2478/pomr-2024-0046
摘要
Abstract This study investigates the prediction of the aerodynamic characteristics of Flettner rotors through three deep learning models. Various numbers of Flettner rotors, arrangements, and spin ratios are employed to consider these effects in the dataset. For the training of deep learning models, a dataset of aerodynamic force coefficients and flow fields is generated using Computational Fluid Dynamics (CFD). Three deep learning architectures (U-net, Encoder-Decoder, and Decoder models) are employed and trained to predict the aerodynamic characteristics of Flettner rotors. Three deep learning models are established through a training stage with a hyperparameter study and by altering the number of layers. The aerodynamic force coefficients and flow fields are predicted by established deep learning models and show small absolute errors compared to those from the CFD analysis. Moreover, predicted flow fields reflect the flow characteristics according to the difference of spin ratio and arrangement of Flettner rotors. In conclusion, the established deep learning models demonstrate rapid and robust predictions of aerodynamic force coefficients and flow fields for Flettner rotors under varying arrangements and spin ratios. Furthermore, a significant reduction in computational time is measured when comparing the analysis time of CFD simulations to the training and testing time of the deep learning models.
科研通智能强力驱动
Strongly Powered by AbleSci AI