Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents

材料科学 超材料 自愈水凝胶 纳米技术 仿生学 生物医学工程 光电子学 高分子化学 工程类
作者
Sirawit Pruksawan,Rodney Teo,Yu Hong Cheang,Yi Ting Chong,Evelyn Ling Ling Ng,Fuke Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c20599
摘要

Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design. Here, we propose structurally transformable and reconfigurable hydrogel-based mechanical metamaterials through three-dimensional (3D) printing of lattice structures composed of multishape-memory poly(acrylic acid)-chitosan hydrogels. By incorporating reversible shape-memory mechanisms that control the structural arrangements of the lattice, these metamaterials can exhibit transformable and reconfigurable mechanical characteristics under various environmental conditions, including auxetic behavior, with Poisson's ratios switchable from negative to zero or positive. These adaptable mechanical responses across different states arise from structural changes in lattice, surpassing the gradual changes observed in conventional stimuli-responsive materials. The application of these metamaterials in multimode biomedical stents demonstrates their adaptability in practical settings, allowing them to transition between expandable, nonexpandable, and shrinkable states, with corresponding Poisson's ratios. By integrating multishape-memory soft materials with metamaterial design, we can significantly enhance their functionality, advancing the development of smart biomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的惮发布了新的文献求助10
刚刚
TT完成签到,获得积分10
刚刚
丰富源智完成签到,获得积分10
1秒前
1秒前
oleskarabach完成签到,获得积分20
1秒前
高高发布了新的文献求助10
1秒前
初之完成签到,获得积分20
2秒前
沐沐ni完成签到,获得积分10
3秒前
鸡腿子完成签到,获得积分10
4秒前
iiing发布了新的文献求助10
4秒前
yuminger完成签到 ,获得积分10
4秒前
tc完成签到,获得积分10
4秒前
墨染完成签到,获得积分10
4秒前
丹丹完成签到 ,获得积分10
5秒前
5秒前
棍棍来也完成签到,获得积分10
5秒前
5秒前
小白完成签到,获得积分10
6秒前
薄荷喵完成签到,获得积分10
6秒前
潇洒的马里奥完成签到,获得积分10
6秒前
闪闪的乐蕊完成签到,获得积分10
6秒前
彭于晏应助zimo采纳,获得10
7秒前
john完成签到,获得积分10
8秒前
wjw完成签到,获得积分10
9秒前
9秒前
sunshine完成签到 ,获得积分10
9秒前
兀那狗子别跑完成签到,获得积分10
10秒前
汕头凯奇完成签到,获得积分10
10秒前
傲娇的沁完成签到,获得积分10
10秒前
XIEMIN完成签到,获得积分10
10秒前
qn完成签到,获得积分10
12秒前
Akim应助pluto采纳,获得10
13秒前
昌怜烟完成签到,获得积分10
14秒前
斯文败类应助震动的凡柔采纳,获得10
14秒前
15秒前
scq完成签到 ,获得积分10
16秒前
大模型应助tc采纳,获得10
16秒前
西海岸的风完成签到 ,获得积分10
16秒前
kuku完成签到,获得积分10
17秒前
keke给keke的求助进行了留言
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746429
求助须知:如何正确求助?哪些是违规求助? 3289289
关于积分的说明 10063824
捐赠科研通 3005693
什么是DOI,文献DOI怎么找? 1650347
邀请新用户注册赠送积分活动 785833
科研通“疑难数据库(出版商)”最低求助积分说明 751282