Low-altitude target detection algorithm for intelligent scenic areas based on improved YOLOv10

计算机科学 高度(三角形) 低空 遥感 人工智能 计算机视觉 地理 数学 几何学
作者
Xiao Li,Sun Ji,Pei Li,Ye Tao,Hui Li
标识
DOI:10.1117/12.3058111
摘要

With the development of drone technology, its application in intelligent scenic areas provides a new solution for tourist flow monitoring. To enhance detection accuracy and satisfy real-time demands, this study proposed a low-altitude target detection algorithm of intelligent scenic areas based on improved YOLOv10, and developed an intelligence scenic areas tourist flow monitoring and statistic system accordingly. By introducing the Large Separable Kernel Attention (LSKA) mechanism, the algorithm optimizes the Spatial Pyramid Pooling Fast (SPPF) module and effectively capturing long-range dependencies in images. In addition, we added a Small Target Detection Layer(STDL) to the YOLOv10 network structure to retain more location information and detailed features about small targets. Results from experiments conducted on the VisDrone2019 dataset show that, compared to the original YOLOv10 model, the enhanced version demonstrates an improvement in Recall by 2.0% and an increase in mAP@0.5 by 1.7%. Compared with other mainstream models, our proposed algorithm has improved on many evaluation metrics, and fulfills the requirements for real-time detection. It has been successfully applied to Tsingtao Beer Museum and has achieved good results. The results of the experiments indicate that the algorithm performs well in detecting low-altitude aerial photography images of drones, and provides effective technical assistance for the safety management of intelligent scenic areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助buuyoo采纳,获得10
1秒前
情怀应助liuwei采纳,获得10
1秒前
aaefv完成签到,获得积分10
1秒前
小小菜鸟发布了新的文献求助10
1秒前
深情安青应助123采纳,获得10
1秒前
赫初晴完成签到 ,获得积分10
1秒前
平淡的亦丝应助明研采纳,获得20
1秒前
3秒前
库外发布了新的文献求助10
4秒前
汉堡包应助清新的冷松采纳,获得10
4秒前
从心应助LiShin采纳,获得10
4秒前
帅气的听莲完成签到,获得积分10
4秒前
英姑应助Areslcy采纳,获得10
4秒前
善学以致用应助zxz采纳,获得10
5秒前
whatever应助luoshi采纳,获得10
6秒前
6秒前
科研通AI5应助徐徐采纳,获得10
7秒前
shouyu29应助MADKAI采纳,获得10
7秒前
shouyu29应助MADKAI采纳,获得10
7秒前
Lucas应助MADKAI采纳,获得10
7秒前
Vii应助MADKAI采纳,获得10
7秒前
李爱国应助MADKAI采纳,获得10
7秒前
李健应助MADKAI采纳,获得10
7秒前
烟花应助MADKAI采纳,获得20
7秒前
香蕉觅云应助MADKAI采纳,获得10
7秒前
科研通AI2S应助MADKAI采纳,获得10
7秒前
Singularity应助MADKAI采纳,获得10
7秒前
8秒前
8秒前
赘婿应助GGZ采纳,获得10
8秒前
阿盛完成签到,获得积分10
8秒前
8秒前
怕孤单的含羞草完成签到 ,获得积分10
9秒前
Muuu发布了新的文献求助10
9秒前
仁爱的乐枫完成签到,获得积分10
10秒前
10秒前
金润完成签到,获得积分10
11秒前
ZZ完成签到,获得积分10
11秒前
AteeqBaloch发布了新的文献求助10
12秒前
PaulLao完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762