Low-altitude target detection algorithm for intelligent scenic areas based on improved YOLOv10

计算机科学 高度(三角形) 低空 遥感 人工智能 计算机视觉 地理 数学 几何学
作者
Xiao Li,Sun Ji,Pei Li,Ye Tao,Hui Li
标识
DOI:10.1117/12.3058111
摘要

With the development of drone technology, its application in intelligent scenic areas provides a new solution for tourist flow monitoring. To enhance detection accuracy and satisfy real-time demands, this study proposed a low-altitude target detection algorithm of intelligent scenic areas based on improved YOLOv10, and developed an intelligence scenic areas tourist flow monitoring and statistic system accordingly. By introducing the Large Separable Kernel Attention (LSKA) mechanism, the algorithm optimizes the Spatial Pyramid Pooling Fast (SPPF) module and effectively capturing long-range dependencies in images. In addition, we added a Small Target Detection Layer(STDL) to the YOLOv10 network structure to retain more location information and detailed features about small targets. Results from experiments conducted on the VisDrone2019 dataset show that, compared to the original YOLOv10 model, the enhanced version demonstrates an improvement in Recall by 2.0% and an increase in mAP@0.5 by 1.7%. Compared with other mainstream models, our proposed algorithm has improved on many evaluation metrics, and fulfills the requirements for real-time detection. It has been successfully applied to Tsingtao Beer Museum and has achieved good results. The results of the experiments indicate that the algorithm performs well in detecting low-altitude aerial photography images of drones, and provides effective technical assistance for the safety management of intelligent scenic areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
sandra完成签到 ,获得积分10
4秒前
6秒前
Felice完成签到,获得积分10
7秒前
8秒前
怕黑念薇发布了新的文献求助10
8秒前
江九言完成签到,获得积分10
10秒前
11秒前
13秒前
坦率抽屉完成签到 ,获得积分10
13秒前
清澈水眸发布了新的文献求助10
13秒前
Wang发布了新的文献求助10
15秒前
施小好发布了新的文献求助10
16秒前
19秒前
怕黑念薇完成签到,获得积分10
19秒前
Mercy完成签到,获得积分10
19秒前
19秒前
21秒前
Fjj发布了新的文献求助10
23秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
丰知然应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
25秒前
三月聚粮应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
平常的羊完成签到 ,获得积分10
26秒前
27秒前
斯文败类应助满眼星辰采纳,获得10
30秒前
兔农糖发布了新的文献求助10
31秒前
ZHOUZHEN完成签到,获得积分10
32秒前
zhanbin.liang完成签到,获得积分10
33秒前
个性的苑睐完成签到,获得积分20
35秒前
Aegean完成签到,获得积分20
37秒前
NexusExplorer应助兔农糖采纳,获得10
38秒前
jialeh3完成签到,获得积分10
39秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738