Low-altitude target detection algorithm for intelligent scenic areas based on improved YOLOv10

计算机科学 高度(三角形) 低空 遥感 人工智能 计算机视觉 地理 数学 几何学
作者
Xiao Li,Sun Ji,Pei Li,Ye Tao,Hui Li
标识
DOI:10.1117/12.3058111
摘要

With the development of drone technology, its application in intelligent scenic areas provides a new solution for tourist flow monitoring. To enhance detection accuracy and satisfy real-time demands, this study proposed a low-altitude target detection algorithm of intelligent scenic areas based on improved YOLOv10, and developed an intelligence scenic areas tourist flow monitoring and statistic system accordingly. By introducing the Large Separable Kernel Attention (LSKA) mechanism, the algorithm optimizes the Spatial Pyramid Pooling Fast (SPPF) module and effectively capturing long-range dependencies in images. In addition, we added a Small Target Detection Layer(STDL) to the YOLOv10 network structure to retain more location information and detailed features about small targets. Results from experiments conducted on the VisDrone2019 dataset show that, compared to the original YOLOv10 model, the enhanced version demonstrates an improvement in Recall by 2.0% and an increase in mAP@0.5 by 1.7%. Compared with other mainstream models, our proposed algorithm has improved on many evaluation metrics, and fulfills the requirements for real-time detection. It has been successfully applied to Tsingtao Beer Museum and has achieved good results. The results of the experiments indicate that the algorithm performs well in detecting low-altitude aerial photography images of drones, and provides effective technical assistance for the safety management of intelligent scenic areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无谋完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Yuanyuan发布了新的文献求助10
3秒前
刀刀完成签到,获得积分10
4秒前
我是老大应助优美傲安采纳,获得10
5秒前
宇宙无敌完成签到 ,获得积分10
5秒前
好困发布了新的文献求助10
5秒前
Orange应助拾一采纳,获得10
5秒前
zhanghan完成签到,获得积分10
6秒前
6秒前
罗实发布了新的文献求助10
6秒前
6秒前
VLH发布了新的文献求助10
6秒前
袁睿韬应助阳光下的微风采纳,获得10
8秒前
han发布了新的文献求助10
9秒前
Jasper应助贪玩的德地采纳,获得10
10秒前
发10篇SCI发布了新的文献求助10
10秒前
11秒前
11秒前
Y0Y0完成签到 ,获得积分10
12秒前
追寻的怜容完成签到,获得积分10
12秒前
一只小鲨鱼完成签到,获得积分10
13秒前
酷波er应助忧虑的初晴采纳,获得10
13秒前
15秒前
飞云发布了新的文献求助10
16秒前
烤匠喊你吃鱼关注了科研通微信公众号
16秒前
你不知道完成签到 ,获得积分10
17秒前
17秒前
拾一发布了新的文献求助10
17秒前
jjy完成签到,获得积分10
17秒前
17秒前
行歌发布了新的文献求助10
17秒前
善学以致用应助ln采纳,获得10
18秒前
19秒前
冬雾发布了新的文献求助10
19秒前
20秒前
20秒前
wwwwww发布了新的文献求助10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352