An Asymptotic Multi-Scale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 图像融合 计算机科学 人工智能 融合 比例(比率) 传感器融合 遥感 计算机视觉 图像(数学) 地质学 地理 地图学 哲学 语言学
作者
Shuaiqi Liu,Tingting Shao,Siyuan Liu,Bing Li,Yudong Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525840
摘要

Despite the high spectral resolution and abundant information of hyperspectral images (HSI), their spatial resolution is relatively low due to limitations in sensor technology. Sensors often need to sacrifice some spatial resolution to ensure accurate light energy measurement when pursuing high spectral resolution. This trade-off results in HSI's inability to capture fine spatial details, thereby limiting its application in scenarios requiring high-precision spatial information. HSI and multispectral images (MSI) fusion is a commonly used technique for generating high-resolution HSI (HR-HSI). However, many deep learning-based HSI-MSI fusion algorithms ignore correlation and multi-scale information between input images. To address this issue, we propose an asymptotic multi-scale symmetric fusion network (AMSF-Net) for hyperspectral and multispectral image fusion. AMSF-Net consists of two parts: the multi-level feature fusion (MFF) module and the progressive cross-scale spatial perception (PCP) module. The MFF module uses multi-stream feature extraction branches to perform information interaction between HSI and MSI at the same scale layer by layer, compensating for the spatial details lacking in HSI and the spectral details absent in MSI. The PCP module combines the input and output features of MFF, utilizes multi-scale bidirectional strip convolution and deep convolution to further refine edge features, and reconstructs HR-HSI by learning the features of different expansion roll branches by connecting across scales. Comparative experiments with several state-of-the-art HSI-MSI fusion algorithms on four publicly available datasets, CAVE, Chikusei, Houston and WorldView-3 are conducted to validate the effectiveness and superiority of AMSF-Net. On the Chikusei dataset, improvements were 9.1%, 12.5%, and 5.1%, respectively, on the indicators RMSE, ERGAS, and SAM, compared to the suboptimal method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助Damocles采纳,获得20
刚刚
BANG发布了新的文献求助10
1秒前
1秒前
www发布了新的文献求助20
2秒前
dmj发布了新的文献求助10
2秒前
3秒前
3秒前
Yimi完成签到,获得积分10
4秒前
源儿完成签到,获得积分10
4秒前
Liou发布了新的文献求助50
4秒前
tomato完成签到,获得积分10
5秒前
Youdge应助冷静的铅笔采纳,获得20
6秒前
盒子发布了新的文献求助10
6秒前
8秒前
LL发布了新的文献求助10
8秒前
mov完成签到,获得积分10
8秒前
chen完成签到,获得积分10
9秒前
mu完成签到,获得积分20
9秒前
桐桐应助笔墨留香采纳,获得10
10秒前
小马甲应助BANG采纳,获得10
11秒前
冯东关注了科研通微信公众号
11秒前
momo完成签到,获得积分10
14秒前
摇滚谬中庸完成签到 ,获得积分10
14秒前
16秒前
16秒前
研友_ngKyqn发布了新的文献求助10
17秒前
斯文败类应助小马哥采纳,获得10
17秒前
Olivergaga完成签到,获得积分20
18秒前
himsn完成签到,获得积分10
18秒前
lidongxing完成签到,获得积分10
20秒前
笔墨留香发布了新的文献求助10
21秒前
YN完成签到,获得积分10
21秒前
博修发布了新的文献求助10
23秒前
mu发布了新的文献求助30
24秒前
沉默冬卉发布了新的文献求助10
24秒前
小蘑菇应助小勇仔采纳,获得10
26秒前
6小瓶子完成签到,获得积分10
28秒前
NexusExplorer应助siyuwang1234采纳,获得10
29秒前
32秒前
烟花应助沉默冬卉采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182