An Asymptotic Multi-Scale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 图像融合 计算机科学 人工智能 融合 比例(比率) 传感器融合 遥感 计算机视觉 图像(数学) 地质学 地理 地图学 哲学 语言学
作者
Shuaiqi Liu,Tingting Shao,Siyuan Liu,Bing Li,Yudong Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525840
摘要

Despite the high spectral resolution and abundant information of hyperspectral images (HSI), their spatial resolution is relatively low due to limitations in sensor technology. Sensors often need to sacrifice some spatial resolution to ensure accurate light energy measurement when pursuing high spectral resolution. This trade-off results in HSI's inability to capture fine spatial details, thereby limiting its application in scenarios requiring high-precision spatial information. HSI and multispectral images (MSI) fusion is a commonly used technique for generating high-resolution HSI (HR-HSI). However, many deep learning-based HSI-MSI fusion algorithms ignore correlation and multi-scale information between input images. To address this issue, we propose an asymptotic multi-scale symmetric fusion network (AMSF-Net) for hyperspectral and multispectral image fusion. AMSF-Net consists of two parts: the multi-level feature fusion (MFF) module and the progressive cross-scale spatial perception (PCP) module. The MFF module uses multi-stream feature extraction branches to perform information interaction between HSI and MSI at the same scale layer by layer, compensating for the spatial details lacking in HSI and the spectral details absent in MSI. The PCP module combines the input and output features of MFF, utilizes multi-scale bidirectional strip convolution and deep convolution to further refine edge features, and reconstructs HR-HSI by learning the features of different expansion roll branches by connecting across scales. Comparative experiments with several state-of-the-art HSI-MSI fusion algorithms on four publicly available datasets, CAVE, Chikusei, Houston and WorldView-3 are conducted to validate the effectiveness and superiority of AMSF-Net. On the Chikusei dataset, improvements were 9.1%, 12.5%, and 5.1%, respectively, on the indicators RMSE, ERGAS, and SAM, compared to the suboptimal method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助GLCGLCGLCGLC采纳,获得10
1秒前
yyx发布了新的文献求助20
1秒前
2秒前
Sn完成签到,获得积分10
4秒前
轻舟完成签到,获得积分10
5秒前
6秒前
6秒前
arya发布了新的文献求助10
7秒前
江湖白晓灵完成签到,获得积分10
8秒前
creep发布了新的文献求助20
8秒前
8秒前
高超发布了新的文献求助30
11秒前
12秒前
漂亮翠曼发布了新的文献求助10
12秒前
13秒前
好久不见完成签到,获得积分10
13秒前
14秒前
锐哥发布了新的文献求助10
18秒前
周周发布了新的文献求助10
18秒前
19秒前
21秒前
21秒前
华仔应助fei采纳,获得100
21秒前
22秒前
小谷发布了新的文献求助10
24秒前
咚咚发布了新的文献求助10
26秒前
冷静访梦发布了新的文献求助10
26秒前
28秒前
舒心谷雪完成签到 ,获得积分10
28秒前
HarryYang发布了新的文献求助30
29秒前
zzt完成签到,获得积分10
29秒前
漂亮翠曼完成签到,获得积分20
30秒前
汉堡包应助寂寞的小夏采纳,获得10
30秒前
Mr.Left发布了新的文献求助10
31秒前
23发布了新的文献求助20
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596