An Asymptotic Multi-Scale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 图像融合 计算机科学 人工智能 融合 比例(比率) 传感器融合 遥感 计算机视觉 图像(数学) 地质学 地理 地图学 哲学 语言学
作者
Shuaiqi Liu,Tingting Shao,Siyuan Liu,Bing Li,Yudong Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525840
摘要

Despite the high spectral resolution and abundant information of hyperspectral images (HSI), their spatial resolution is relatively low due to limitations in sensor technology. Sensors often need to sacrifice some spatial resolution to ensure accurate light energy measurement when pursuing high spectral resolution. This trade-off results in HSI's inability to capture fine spatial details, thereby limiting its application in scenarios requiring high-precision spatial information. HSI and multispectral images (MSI) fusion is a commonly used technique for generating high-resolution HSI (HR-HSI). However, many deep learning-based HSI-MSI fusion algorithms ignore correlation and multi-scale information between input images. To address this issue, we propose an asymptotic multi-scale symmetric fusion network (AMSF-Net) for hyperspectral and multispectral image fusion. AMSF-Net consists of two parts: the multi-level feature fusion (MFF) module and the progressive cross-scale spatial perception (PCP) module. The MFF module uses multi-stream feature extraction branches to perform information interaction between HSI and MSI at the same scale layer by layer, compensating for the spatial details lacking in HSI and the spectral details absent in MSI. The PCP module combines the input and output features of MFF, utilizes multi-scale bidirectional strip convolution and deep convolution to further refine edge features, and reconstructs HR-HSI by learning the features of different expansion roll branches by connecting across scales. Comparative experiments with several state-of-the-art HSI-MSI fusion algorithms on four publicly available datasets, CAVE, Chikusei, Houston and WorldView-3 are conducted to validate the effectiveness and superiority of AMSF-Net. On the Chikusei dataset, improvements were 9.1%, 12.5%, and 5.1%, respectively, on the indicators RMSE, ERGAS, and SAM, compared to the suboptimal method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南亭完成签到,获得积分10
刚刚
Orange应助o10采纳,获得10
1秒前
1秒前
1秒前
小王发布了新的文献求助10
2秒前
初吻还在完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助10
3秒前
Asss完成签到,获得积分10
3秒前
3秒前
时光友岸完成签到,获得积分10
4秒前
5秒前
昭昭完成签到,获得积分10
5秒前
niu1完成签到,获得积分10
6秒前
铃兰完成签到,获得积分10
6秒前
尘尘完成签到,获得积分10
6秒前
7秒前
yan完成签到,获得积分20
7秒前
7秒前
小鹿斑比完成签到 ,获得积分10
8秒前
洛洛完成签到 ,获得积分10
8秒前
浮华乱世完成签到 ,获得积分10
8秒前
otaro完成签到,获得积分10
8秒前
万能图书馆应助zsqqqqq采纳,获得10
8秒前
领导范儿应助zhonghbush采纳,获得10
9秒前
reck发布了新的文献求助10
9秒前
舒服的鱼完成签到 ,获得积分10
9秒前
9秒前
WLL完成签到,获得积分10
9秒前
9秒前
罗mian发布了新的文献求助10
9秒前
轻松的雨旋完成签到,获得积分10
10秒前
星辰大海应助小宇采纳,获得10
10秒前
啦啦啦发布了新的文献求助10
11秒前
zxk完成签到,获得积分10
11秒前
11秒前
12秒前
xjx完成签到 ,获得积分10
12秒前
酷炫大树发布了新的文献求助10
13秒前
orixero应助凶狠的盼柳采纳,获得10
13秒前
阿翼完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672