An Asymptotic Multi-Scale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 图像融合 计算机科学 人工智能 融合 比例(比率) 传感器融合 遥感 计算机视觉 图像(数学) 地质学 地理 地图学 哲学 语言学
作者
Shuaiqi Liu,Tingting Shao,Siyuan Liu,Bing Li,Yudong Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2025.3525840
摘要

Despite the high spectral resolution and abundant information of hyperspectral images (HSI), their spatial resolution is relatively low due to limitations in sensor technology. Sensors often need to sacrifice some spatial resolution to ensure accurate light energy measurement when pursuing high spectral resolution. This trade-off results in HSI's inability to capture fine spatial details, thereby limiting its application in scenarios requiring high-precision spatial information. HSI and multispectral images (MSI) fusion is a commonly used technique for generating high-resolution HSI (HR-HSI). However, many deep learning-based HSI-MSI fusion algorithms ignore correlation and multi-scale information between input images. To address this issue, we propose an asymptotic multi-scale symmetric fusion network (AMSF-Net) for hyperspectral and multispectral image fusion. AMSF-Net consists of two parts: the multi-level feature fusion (MFF) module and the progressive cross-scale spatial perception (PCP) module. The MFF module uses multi-stream feature extraction branches to perform information interaction between HSI and MSI at the same scale layer by layer, compensating for the spatial details lacking in HSI and the spectral details absent in MSI. The PCP module combines the input and output features of MFF, utilizes multi-scale bidirectional strip convolution and deep convolution to further refine edge features, and reconstructs HR-HSI by learning the features of different expansion roll branches by connecting across scales. Comparative experiments with several state-of-the-art HSI-MSI fusion algorithms on four publicly available datasets, CAVE, Chikusei, Houston and WorldView-3 are conducted to validate the effectiveness and superiority of AMSF-Net. On the Chikusei dataset, improvements were 9.1%, 12.5%, and 5.1%, respectively, on the indicators RMSE, ERGAS, and SAM, compared to the suboptimal method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小马甲应助眯眯眼的板栗采纳,获得10
刚刚
刚刚
刚刚
张勇振完成签到,获得积分10
刚刚
茱萸完成签到,获得积分10
1秒前
火星上的醉山完成签到,获得积分10
1秒前
小吉麻麻发布了新的文献求助10
1秒前
HCLonely发布了新的文献求助10
2秒前
2秒前
翟紫萌完成签到,获得积分10
2秒前
大地上的鱼完成签到,获得积分10
2秒前
杨杨得亿完成签到,获得积分10
2秒前
妙妙0关注了科研通微信公众号
2秒前
2秒前
2秒前
NICKPLZ完成签到,获得积分10
2秒前
王小红完成签到,获得积分10
3秒前
阿泽发布了新的文献求助10
3秒前
周ZHOU发布了新的文献求助10
3秒前
Fall完成签到,获得积分10
3秒前
bbh完成签到,获得积分10
4秒前
orixero应助Song采纳,获得10
4秒前
4秒前
科研通AI6应助rydrb采纳,获得10
4秒前
猪猪hero应助聪慧的如彤采纳,获得10
4秒前
4秒前
5秒前
安珊发布了新的文献求助30
5秒前
星辰大海应助大帅采纳,获得10
5秒前
draw9708发布了新的文献求助10
6秒前
林献关注了科研通微信公众号
6秒前
万能图书馆应助osachon采纳,获得10
6秒前
6秒前
小也同学发布了新的文献求助10
6秒前
zqy完成签到,获得积分10
7秒前
华仔应助温暖冰颜采纳,获得10
7秒前
苹果完成签到,获得积分20
7秒前
lacusw完成签到 ,获得积分10
7秒前
Twonej应助Agee_Feng采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188