Scale-specific effects of urban landscape pattern on the COVID-19 epidemic in Hangzhou, China

景观生态学 2019年冠状病毒病(COVID-19) 中国 地理 自然保护 2019-20冠状病毒爆发 比例(比率) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 可持续发展 生态学 经济地理学 环境规划 环境资源管理 生物 病毒学 地图学 环境科学 爆发 医学 传染病(医学专业) 考古 栖息地 疾病 病理
作者
Junbin Chen,Zhou Sun,Yu Wu,Guang Hu,Yanping Wen
出处
期刊:Landscape Ecology [Springer Science+Business Media]
卷期号:39 (11)
标识
DOI:10.1007/s10980-024-01998-7
摘要

Abstract Context Understanding the scale-specific effects of different landscape variables on the COVID-19 epidemics is critical for developing the precise and effective prevention and control strategies within urban areas. Objective Based on the landscape epidemiology framework, we analyzed the scale-specific effects of urban landscape pattern on COVID-19 epidemics in Hangzhou, China. Methods We collected COVID-19 cases in Hangzhou from 2020‒2022 and combined the datasets of land use and land cover (LULC) and social gathering point (SGP) to quantify the urban landscape pattern. Optimal general linear model with stepwise regression was applied to explore the dominant landscape factors driving the COVID-19 transmission in the city. Furthermore, multi-scale geographically weighted regression illustrated the spatial heterogeneity and scale specificity of these landscape variables’ effects to COVID-19 epidemic. Results Eight landscape variables of LULC and SGP patterns were identified which explained 68.5% of the variance in spatial risk of COVID-19. Different optimal bandwidths across these variables in MGWR indicated their scale-specific effects. LSI of green space enhanced the spatial risk across the entire region. The effects of landscape contagion, the number of water bodies, LSI of cropland and built-up areas, and the density of commercial houses were detected to vary between urban and suburban areas. The effects of LSI of water bodies and the density of shopping malls were found to vary among different districts. Conclusions In this study, we firstly discriminated the scale-specific effects of different landscape variables on the COVID-19 epidemic in the urban region. These findings can help to optimize the differentiated zoning prevention and control strategies for COVID-19 in cities and guide policy-making and urban planning at a multi-scale hierarchical perspective to improve public health and urban sustainability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星完成签到,获得积分10
刚刚
努力向上的小刘完成签到,获得积分10
2秒前
李健应助小宇OvO采纳,获得10
3秒前
卡卡完成签到 ,获得积分10
3秒前
Lu完成签到,获得积分10
3秒前
白色梨花发布了新的文献求助30
6秒前
渣兔完成签到,获得积分10
6秒前
4652376完成签到 ,获得积分10
11秒前
无情的幻嫣完成签到,获得积分10
11秒前
12秒前
李小小飞完成签到,获得积分10
13秒前
14秒前
hello完成签到,获得积分10
14秒前
我是老大应助无情的幻嫣采纳,获得10
14秒前
Roman完成签到,获得积分10
15秒前
slin_sjtu发布了新的文献求助10
17秒前
周周发布了新的文献求助20
17秒前
小党完成签到,获得积分10
17秒前
18秒前
昏睡的白桃完成签到,获得积分10
18秒前
小宇OvO发布了新的文献求助10
19秒前
jiaolulu发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
真的不想干活了完成签到,获得积分10
23秒前
美丽的依琴完成签到,获得积分10
24秒前
Xin完成签到,获得积分10
30秒前
Aurora.H完成签到,获得积分10
33秒前
33秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
打打应助科研通管家采纳,获得10
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
Ava应助科研通管家采纳,获得10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
duckspy发布了新的文献求助10
36秒前
36秒前
36秒前
xiaowan完成签到,获得积分10
37秒前
Terry完成签到,获得积分10
38秒前
张张张哈哈哈完成签到,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022