Supervised machine learning compared to large language models for identifying functional seizures from medical records

置信区间 接收机工作特性 逻辑回归 脑电图 卡帕 神经影像学 癫痫 医学 惊厥 机器学习 心理学 内科学 听力学 人工智能 精神科 计算机科学 数学 几何学
作者
Wesley T. Kerr,Katherine N. McFarlane,Gabriela Figueiredo Pucci,Danielle R. Carns,Alex Israel,Lianne Vighetti,Page B. Pennell,John M. Stern,Zongqi Xia,Yanshan Wang
出处
期刊:Epilepsia [Wiley]
标识
DOI:10.1111/epi.18272
摘要

Abstract Objective The Functional Seizures Likelihood Score (FSLS) is a supervised machine learning–based diagnostic score that was developed to differentiate functional seizures (FS) from epileptic seizures (ES). In contrast to this targeted approach, large language models (LLMs) can identify patterns in data for which they were not specifically trained. To evaluate the relative benefits of each approach, we compared the diagnostic performance of the FSLS to two LLMs: ChatGPT and GPT‐4. Methods In total, 114 anonymized cases were constructed based on patients with documented FS, ES, mixed ES and FS, or physiologic seizure‐like events (PSLEs). Text‐based data were presented in three sequential prompts to the LLMs, showing the history of present illness (HPI), electroencephalography (EEG) results, and neuroimaging results. We compared the accuracy (number of correct predictions/number of cases) and area under the receiver‐operating characteristic (ROC) curves (AUCs) of the LLMs to the FSLS using mixed‐effects logistic regression. Results The accuracy of FSLS was 74% (95% confidence interval [CI] 65%–82%) and the AUC was 85% (95% CI 77%–92%). GPT‐4 was superior to both the FSLS and ChatGPT ( p <.001), with an accuracy of 85% (95% CI 77%–91%) and AUC of 87% (95% CI 79%–95%). Cohen's kappa between the FSLS and GPT‐4 was 40% (fair). The LLMs provided different predictions on different days when the same note was provided for 33% of patients, and the LLM's self‐rated certainty was moderately correlated with this observed variability (Spearman's rho 2 : 30% [fair, ChatGPT] and 63% [substantial, GPT‐4]). Significance Both GPT‐4 and the FSLS identified a substantial subset of patients with FS based on clinical history. The fair agreement in predictions highlights that the LLMs identified patients differently from the structured score. The inconsistency of the LLMs' predictions across days and incomplete insight into their own consistency was concerning. This comparison highlights both benefits and cautions about how machine learning and artificial intelligence could identify patients with FS in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Welcome发布了新的文献求助10
刚刚
刚刚
yatou5651完成签到,获得积分10
1秒前
虚心的岩完成签到,获得积分10
1秒前
2秒前
2秒前
federish完成签到 ,获得积分10
3秒前
23DD发布了新的文献求助10
3秒前
唐僧洗发用飘柔完成签到,获得积分10
4秒前
不安豁完成签到,获得积分10
4秒前
沉默傲薇发布了新的文献求助10
4秒前
大写的笨完成签到,获得积分10
4秒前
p二完成签到,获得积分10
4秒前
qq完成签到,获得积分10
5秒前
naitangkeke完成签到,获得积分10
5秒前
Rondab应助zqgxiangbiye采纳,获得10
6秒前
平常的不评完成签到,获得积分10
6秒前
CHEN发布了新的文献求助10
6秒前
7秒前
zp完成签到 ,获得积分10
7秒前
zzzzzz完成签到,获得积分10
7秒前
丘比特应助沉默的友安采纳,获得10
8秒前
fang完成签到,获得积分20
8秒前
一点点完成签到,获得积分10
8秒前
雪菜应助正在进行时采纳,获得10
9秒前
科研啊科研完成签到,获得积分10
9秒前
小星发布了新的文献求助10
9秒前
忧虑的乐驹完成签到,获得积分10
10秒前
隐形曼青应助cheche采纳,获得10
11秒前
11秒前
12秒前
Laser_lei完成签到 ,获得积分10
12秒前
科研皇帝的民工完成签到,获得积分10
12秒前
amy完成签到,获得积分0
13秒前
仁爱的帽子完成签到,获得积分10
13秒前
13秒前
想不出昵称完成签到,获得积分10
13秒前
shfgref完成签到,获得积分10
15秒前
yuanzhi完成签到,获得积分10
16秒前
内向秋寒完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259