Difference-complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
玩命的十三完成签到 ,获得积分10
4秒前
寂寞的诗云完成签到,获得积分10
6秒前
我爱科研完成签到 ,获得积分10
6秒前
7秒前
Bin_Liu发布了新的文献求助10
8秒前
She完成签到,获得积分10
8秒前
11秒前
Raki完成签到,获得积分10
12秒前
22完成签到 ,获得积分10
12秒前
Echo_1995完成签到,获得积分10
15秒前
徐慕源完成签到,获得积分10
15秒前
able发布了新的文献求助10
16秒前
呜呜完成签到 ,获得积分10
17秒前
17秒前
CQ完成签到 ,获得积分10
18秒前
漂亮天真完成签到,获得积分10
19秒前
gmc完成签到 ,获得积分10
19秒前
怡然白竹完成签到 ,获得积分10
21秒前
懵懂的海露完成签到,获得积分10
25秒前
testz完成签到,获得积分10
27秒前
28秒前
一一一完成签到,获得积分10
31秒前
翊然甜周完成签到,获得积分10
31秒前
31秒前
zdnn完成签到,获得积分10
33秒前
TLDX发布了新的文献求助10
36秒前
鳄鱼蛋完成签到,获得积分10
37秒前
luwenxuan完成签到,获得积分10
37秒前
37秒前
奋斗跳跳糖完成签到,获得积分10
37秒前
小白加油完成签到 ,获得积分10
38秒前
38秒前
星辰大海应助大橙子采纳,获得10
38秒前
39秒前
繁荣的新晴完成签到,获得积分20
40秒前
闫星宇完成签到,获得积分10
40秒前
辻诺完成签到 ,获得积分10
40秒前
AR完成签到,获得积分10
40秒前
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022