Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580 被引量:2
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助苗儿采纳,获得10
1秒前
JayWu完成签到,获得积分10
1秒前
科研通AI2S应助恩禮采纳,获得10
1秒前
ding应助xh采纳,获得10
3秒前
4秒前
aging00发布了新的文献求助10
4秒前
4秒前
赵蕴章完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
1111发布了新的文献求助10
5秒前
CodeCraft应助淳于越泽采纳,获得10
7秒前
7秒前
阿飞关注了科研通微信公众号
7秒前
zhuang完成签到 ,获得积分10
8秒前
852应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
One应助科研通管家采纳,获得10
8秒前
Owen应助hibye采纳,获得10
8秒前
英姑应助科研通管家采纳,获得30
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
李健的小迷弟应助hky采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得50
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得20
9秒前
哈no发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545351
求助须知:如何正确求助?哪些是违规求助? 4631357
关于积分的说明 14620547
捐赠科研通 4573019
什么是DOI,文献DOI怎么找? 2507284
邀请新用户注册赠送积分活动 1484116
关于科研通互助平台的介绍 1455352