Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580 被引量:2
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助怕黑捕采纳,获得10
刚刚
刘飞发布了新的文献求助10
1秒前
慕青应助yinghan采纳,获得10
2秒前
张小松发布了新的文献求助10
2秒前
高高的蓝天完成签到,获得积分10
2秒前
渡111发布了新的文献求助10
2秒前
3秒前
陶醉晓凡完成签到,获得积分10
3秒前
zhao完成签到,获得积分10
3秒前
呜呜呜发布了新的文献求助10
3秒前
diu完成签到,获得积分10
3秒前
浅渊发布了新的文献求助10
3秒前
3秒前
飘逸书易完成签到,获得积分20
4秒前
4秒前
我的小宇宙呢完成签到,获得积分10
4秒前
靳韩羽完成签到,获得积分10
4秒前
allezallez完成签到,获得积分10
5秒前
Sean发布了新的文献求助10
5秒前
田様应助王泽坤采纳,获得10
5秒前
自觉棒棒糖完成签到 ,获得积分20
6秒前
6秒前
斑斑发布了新的文献求助10
6秒前
Jyouang发布了新的文献求助10
6秒前
7秒前
美丽凡阳发布了新的文献求助10
7秒前
科研通AI6应助禹映安采纳,获得10
8秒前
8秒前
durian发布了新的文献求助10
8秒前
8秒前
胡姐姐发布了新的文献求助20
8秒前
踏实的大地完成签到,获得积分10
8秒前
9秒前
9秒前
tum发布了新的文献求助10
9秒前
seasky完成签到,获得积分10
9秒前
After完成签到,获得积分10
10秒前
Owen应助李小伟采纳,获得10
11秒前
隐形曼青应助清秀凌蝶采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401