Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580 被引量:2
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助涵涵采纳,获得10
1秒前
橘里完成签到,获得积分10
1秒前
CHEN完成签到,获得积分20
2秒前
Augenstern关注了科研通微信公众号
3秒前
Quanta发布了新的文献求助10
3秒前
Lucas应助保奔采纳,获得10
5秒前
英俊的铭应助求求科研采纳,获得10
5秒前
6秒前
给钱谢谢发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
12秒前
丘比特应助收费采纳,获得10
12秒前
shunshun51213完成签到,获得积分10
12秒前
lll完成签到,获得积分10
13秒前
慕青应助自由雨莲采纳,获得10
13秒前
14秒前
14秒前
andy发布了新的文献求助10
15秒前
YSZ发布了新的文献求助10
15秒前
18秒前
长情平彤完成签到,获得积分10
20秒前
22秒前
23秒前
24秒前
科研通AI2S应助朴实海亦采纳,获得10
24秒前
酷波er应助DX120210165采纳,获得10
24秒前
TYW完成签到,获得积分10
24秒前
浮游应助Guangdi_xu采纳,获得10
26秒前
优秀绮彤发布了新的文献求助10
28秒前
橘柚发布了新的文献求助10
28秒前
领导范儿应助ddddddddddd采纳,获得10
29秒前
华仔应助给钱谢谢采纳,获得10
29秒前
英俊的铭应助ziyue采纳,获得10
29秒前
星辰大海应助Claudia采纳,获得10
29秒前
妇产科医生完成签到 ,获得积分10
29秒前
31秒前
清欢完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567358
求助须知:如何正确求助?哪些是违规求助? 4652068
关于积分的说明 14698727
捐赠科研通 4593864
什么是DOI,文献DOI怎么找? 2520491
邀请新用户注册赠送积分活动 1492641
关于科研通互助平台的介绍 1463607