Difference-complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助11采纳,获得10
刚刚
sharotju完成签到,获得积分10
1秒前
小陈同学完成签到,获得积分10
1秒前
幽默的凡完成签到 ,获得积分10
1秒前
2秒前
卡琳发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
善学以致用应助薛华倩采纳,获得10
7秒前
huqingtao完成签到,获得积分10
7秒前
了了完成签到,获得积分10
7秒前
8秒前
8秒前
666完成签到,获得积分10
9秒前
12秒前
13秒前
星辰大海应助樱桃窝窝头采纳,获得10
14秒前
258369完成签到,获得积分10
15秒前
16秒前
17秒前
Sunwenrui发布了新的文献求助10
18秒前
薛华倩发布了新的文献求助10
22秒前
白白SAMA123发布了新的文献求助10
22秒前
22秒前
昏睡的飞机完成签到,获得积分10
22秒前
23秒前
24秒前
26秒前
miaojuly发布了新的文献求助10
26秒前
共享精神应助追寻筮采纳,获得10
26秒前
27秒前
莫歌完成签到 ,获得积分10
27秒前
2889580752发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
杨冠文发布了新的文献求助10
28秒前
HOME发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035