Difference-complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜜桃吐司完成签到 ,获得积分10
刚刚
刚刚
xu完成签到 ,获得积分10
刚刚
归雁发布了新的文献求助10
3秒前
超级诗桃完成签到,获得积分20
3秒前
Orange应助leiyang49采纳,获得10
6秒前
Owen应助害怕的语薇采纳,获得10
7秒前
smz关闭了smz文献求助
9秒前
9秒前
啥啥都不会完成签到,获得积分10
12秒前
12秒前
好久不见完成签到 ,获得积分10
13秒前
111发布了新的文献求助10
13秒前
13秒前
17秒前
18秒前
18秒前
18秒前
19秒前
斯文一笑发布了新的文献求助10
20秒前
李歪歪发布了新的文献求助10
22秒前
23秒前
23秒前
喵SCI发布了新的文献求助10
23秒前
WQY发布了新的文献求助10
27秒前
30秒前
俊逸依丝完成签到,获得积分10
31秒前
害怕的语薇完成签到,获得积分10
32秒前
33秒前
35秒前
37秒前
俊逸依丝发布了新的文献求助10
37秒前
爆米花应助啥啥都不会采纳,获得10
39秒前
小胖完成签到,获得积分10
41秒前
44秒前
45秒前
46秒前
大模型应助端庄沛槐采纳,获得30
49秒前
嘿嘿发布了新的文献求助10
50秒前
Eason完成签到,获得积分10
50秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412724
求助须知:如何正确求助?哪些是违规求助? 3015318
关于积分的说明 8869744
捐赠科研通 2703064
什么是DOI,文献DOI怎么找? 1482010
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679781