Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580 被引量:2
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助善良的茗茗采纳,获得30
刚刚
1秒前
糖炒小白云完成签到,获得积分10
1秒前
从容安珊发布了新的文献求助10
1秒前
2秒前
叶赛文完成签到,获得积分10
2秒前
2秒前
jinze完成签到,获得积分10
2秒前
tt完成签到,获得积分10
2秒前
优美曲奇应助绿狗玩偶采纳,获得10
3秒前
iNk应助专注黄豆采纳,获得10
3秒前
3秒前
nan完成签到 ,获得积分10
3秒前
4秒前
4秒前
我是老大应助DY采纳,获得10
4秒前
4秒前
5秒前
星辰大海应助alex采纳,获得10
5秒前
宇文念真完成签到,获得积分10
6秒前
结实的德地完成签到,获得积分10
6秒前
Seeone完成签到,获得积分10
6秒前
6秒前
6秒前
yznfly应助积极聪健采纳,获得30
6秒前
我是老大应助芋泥抹茶卷采纳,获得30
6秒前
luozhen完成签到,获得积分20
8秒前
ming发布了新的文献求助10
8秒前
8秒前
飞快的雨琴完成签到,获得积分20
8秒前
9秒前
从容安珊完成签到,获得积分10
10秒前
Yep0672完成签到,获得积分10
10秒前
Roy完成签到,获得积分10
10秒前
11秒前
KT完成签到,获得积分10
11秒前
11秒前
爆米花应助年轻的宛采纳,获得10
12秒前
niuya完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414563
求助须知:如何正确求助?哪些是违规求助? 4531551
关于积分的说明 14128768
捐赠科研通 4446914
什么是DOI,文献DOI怎么找? 2439545
邀请新用户注册赠送积分活动 1431581
关于科研通互助平台的介绍 1409276