Discovering Cell‐Targeting Ligands and Cell‐Surface Receptors by Selection of DNA‐Encoded Chemical Libraries against Cancer Cells without Predefined Targets

癌细胞 细胞 计算生物学 药物发现 DNA 癌症 受体 癌症研究 化学 生物 生物化学 遗传学
作者
Yuhan Gui,Rui Hou,Yuchen Huang,Yu Zhou,Shihao Liu,Meng Ling,Ying Li,Fong Sang Lam,Rong Ding,Yan Cao,Gang Li,Xiaojie Lu,Xiaoyu Li
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202421172
摘要

Abstract Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell‐targeting ligands. The DNA‐encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target‐agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell‐based DEL selection method against cancer cells without predefined targets. A 104.96‐million‐member DEL was selected against MDA‐MB‐231 and MCF‐7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell‐specific small molecules. We further demonstrated cell‐targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α‐enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA‐MB‐231 cells. Overall, this work offers an efficient approach for discovering cell‐targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的绿真完成签到,获得积分10
刚刚
刚刚
hope发布了新的文献求助10
1秒前
czx发布了新的文献求助10
1秒前
藤原拓海完成签到 ,获得积分10
3秒前
大个应助2023204306324采纳,获得10
4秒前
577发布了新的文献求助10
6秒前
认真自行车完成签到 ,获得积分10
9秒前
Elan完成签到 ,获得积分10
12秒前
chorus完成签到 ,获得积分10
16秒前
搜集达人应助Hiky_0703采纳,获得10
16秒前
nidie完成签到,获得积分10
17秒前
18秒前
朴素海亦发布了新的文献求助10
18秒前
19秒前
时尚的云朵完成签到,获得积分10
19秒前
嘻嘻完成签到 ,获得积分10
23秒前
23秒前
李杰完成签到 ,获得积分10
23秒前
25秒前
YAN完成签到 ,获得积分10
30秒前
2023204306324发布了新的文献求助10
31秒前
32秒前
大模型应助577采纳,获得10
34秒前
懒洋洋发布了新的文献求助10
35秒前
36秒前
反季完成签到 ,获得积分10
36秒前
玻璃球完成签到 ,获得积分10
37秒前
白雪完成签到 ,获得积分10
37秒前
坚强的博士完成签到 ,获得积分10
37秒前
37秒前
听话的紫菜完成签到,获得积分10
38秒前
hx0841完成签到,获得积分10
38秒前
CC完成签到 ,获得积分10
41秒前
JUNE完成签到 ,获得积分20
41秒前
42秒前
today完成签到 ,获得积分10
45秒前
彭于晏应助等待的音响采纳,获得10
46秒前
47秒前
czx完成签到,获得积分10
51秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958