安普克
衰老
蛋白激酶A
细胞生物学
AMP活化蛋白激酶
内皮功能障碍
信号转导
激酶
糖尿病
内分泌学
下调和上调
内科学
生物
化学
医学
生物化学
基因
作者
Changchang Xing,Linhui Shi,Limei Zhu,Tim Aguirre,Ji Qi,Yuanyuan Chen,Yue Liu,Alfred C. Chin,Hong Zhu,Dorothea Fiedler,Alex F. Chen,Chenglai Fu
出处
期刊:Diabetes
[American Diabetes Association]
日期:2025-01-10
摘要
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1. High glucose also strengthens the binding of IP6K1 to AMPK, suppressing the LKB1-mediated AMPK activation. Thus, the elevated LKB1 does not lead to the activation of the AMPK pathway. Instead, it binds more to p53, resulting in p53-dependent endothelial senescence. Endothelial-specific deletion of IP6K1 alleviates, whereas endothelial-specific overexpression of IP6K1 exaggerates the hyperglycemia-induced endothelial senescence. This study reveals a regulatory mechanism of IP6K1 in switching the LKB1/AMPK pathway to LKB1/p53 pathway. IP6K1 represents a potential therapeutic target for treating hyperglycemia-induced endothelial dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI