RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks

整数规划 解算器 线性规划 人工神经网络 强化学习 计算机科学 数学优化 图形 整数(计算机科学) 数学 理论计算机科学 人工智能 程序设计语言
作者
Tae Hoon Lee,Min‐Soo Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.19517
摘要

Mixed-Integer Linear Programming (MILP) is an optimization technique widely used in various fields. Primal heuristics, which reduce the search space of MILP, have enabled traditional solvers (e.g., Gurobi) to efficiently find high-quality solutions. However, traditional primal heuristics rely on expert knowledge, motivating the advent of machine learning (ML)-based primal heuristics that learn repetitive patterns in MILP. Nonetheless, existing ML-based primal heuristics do not guarantee solution feasibility (i.e., satisfying all constraints) and primarily focus on prediction for binary decision variables. When addressing MILP involving non-binary integer variables using ML-based approaches, feasibility issues can become even more pronounced. Since finding an optimal solution requires satisfying all constraints, addressing feasibility is critical. To overcome these limitations, we propose a novel reinforcement learning (RL)-based solver that interacts with MILP to find feasible solutions, rather than delegating sub-problems to traditional solvers. We design reward functions tailored for MILP, which enables the RL agent to learn relationships between decision variables and constraints. Additionally, to effectively model complex relationships among decision variables, we leverage a Transformer encoder-based graph neural network (GNN). Our experimental results demonstrate that the proposed method can solve MILP problems and find near-optimal solutions without delegating the remainder to traditional solvers. The proposed method provides a meaningful step forward as an initial study in solving MILP problems end-to-end based solely on ML.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ayzyy发布了新的文献求助10
2秒前
SYLH应助May采纳,获得10
3秒前
烟花应助现代的短靴采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
湘澜发布了新的文献求助10
4秒前
5秒前
安输完成签到,获得积分10
6秒前
7秒前
8秒前
Tatw完成签到 ,获得积分10
9秒前
12秒前
LI发布了新的文献求助10
12秒前
陶军辉完成签到 ,获得积分10
12秒前
现代的短靴完成签到,获得积分10
13秒前
14秒前
elivsZhou发布了新的文献求助10
14秒前
14秒前
15秒前
vivid完成签到,获得积分10
17秒前
科研小白包完成签到,获得积分10
17秒前
17秒前
小二郎应助LI采纳,获得10
19秒前
19秒前
SYLH应助May采纳,获得10
20秒前
22秒前
风旅完成签到,获得积分10
22秒前
23秒前
独特涫完成签到,获得积分10
23秒前
qqqq发布了新的文献求助10
23秒前
完美世界应助xiaobai采纳,获得10
25秒前
小蘑菇应助ddx采纳,获得10
26秒前
26秒前
123完成签到,获得积分10
28秒前
vagabond发布了新的文献求助10
29秒前
华华发布了新的文献求助10
30秒前
30秒前
30秒前
蟋蟀狂舞完成签到,获得积分10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086