Bias and Discrimination Against Women and Parents in Semi‐Automated Hiring Systems

劳动经济学 业务 人口经济学 社会学 心理学 经济
作者
Sheilla Njoto,Marc Cheong,Lea Frermann,Leah Ruppanner
出处
期刊:New Technology Work and Employment [Wiley]
标识
DOI:10.1111/ntwe.12321
摘要

ABSTRACT Today, organizations are increasingly relying on automated hiring. The mechanization of the hiring process is assumed to render it more neutral, but a growing literature shows algorithmic decisions are as likely to be biased (Dickson, 2018). In this study, we test two types of biases: (1) gender bias; and (2) parenting bias, (i.e., whether mothers and fathers with an extended gap to care for children are penalized vis‐à‐vis those with uninterrupted employment net of equivalent high‐impact qualifications). We apply a classic counterfactual study sending gender and parenthood manipulated CVs to 211 job advertisements across three occupations (men‐dominated, women‐dominated, and gender‐balanced, to mitigate confounding variables associated with gender composition) in the United States and measure penalty‐premium bias in response rates. Our results identify semi‐automated hiring bias against parents who took leave to care for children relative to those with uninterrupted employment. Importantly, we find fathers who have an extended parental leave were the most severely penalized, followed by mothers with an extended parental leave and women and men without parental leave respectively. Ultimately, we identify gender and parenting bias in algorithmic and human hiring decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
情怀应助山羊8201采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
浮游应助mmxx采纳,获得10
4秒前
耍酷的小土豆完成签到,获得积分10
4秒前
5秒前
6秒前
虚幻的小海豚完成签到,获得积分10
6秒前
平淡碧发布了新的文献求助10
7秒前
无所畏惧发布了新的文献求助10
7秒前
9秒前
lulu完成签到,获得积分10
11秒前
Hisoka完成签到,获得积分10
11秒前
下山完成签到,获得积分10
12秒前
xuerui完成签到,获得积分10
12秒前
xiuxiuzhang给xiuxiuzhang的求助进行了留言
16秒前
平淡碧完成签到,获得积分10
17秒前
18秒前
18秒前
17853723535完成签到,获得积分10
19秒前
20秒前
20秒前
是山河锦秀完成签到,获得积分10
21秒前
敛涌发布了新的文献求助40
22秒前
23秒前
蝌蚪完成签到,获得积分10
23秒前
莫大完成签到 ,获得积分10
24秒前
Aicici给Aicici的求助进行了留言
24秒前
25秒前
yuliuism发布了新的文献求助20
26秒前
Julie完成签到 ,获得积分10
27秒前
宇文千万完成签到,获得积分10
27秒前
何pengda发布了新的文献求助10
30秒前
不许焦绿o给不许焦绿o的求助进行了留言
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
泥泞完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336