Remotely Sensed Variables Predict Grassland Diversity Better at Scales Below 1,000 km as Opposed to Abiotic Variables That Predict It Better at Larger Scales

草原 非生物成分 环境科学 多样性(政治) 比例(比率) 气候学 生态学 地理 地质学 生物 地图学 社会学 人类学
作者
Yujin Zhao,Bernhard Schmid,Zhaoju Zheng,Yang Wang,Xiaorong Wang,Yao Wang,Ziyan Chen,Xia Zhao,Dan Zhao,Yuan Zeng,Yongfei Bai
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004648
摘要

Abstract Global spatial patterns of vascular plant diversity have been mapped at coarse grain based on climate‐dominated environment–diversity relationships and, where possible, at finer grain using remote sensing. However, for grasslands with their small plant sizes, the limited availability of vegetation plot data has caused large uncertainties in fine‐grained mapping of species diversity. Here we used vegetation survey data from 1,609 field sites (>4,000 plots of 1 m 2 ), remotely sensed data (ecosystem productivity and phenology, habitat heterogeneity, functional traits and spectral diversity), and abiotic data (water‐ and energy‐related, characterizing climate‐dominated environment) together with machine learning and spatial autoregressive models to predict and map grassland species richness per 100 m 2 across the Mongolian Plateau at 500 m resolution. Combining all variables yielded a predictive accuracy of 69% compared with 64% using remotely sensed variables or 65% using abiotic variables alone. Among remotely sensed variables, functional traits showed the highest predictive power (55%) in species richness estimation, followed by productivity and phenology (48%), spectral diversity (48%) and habitat heterogeneity (48%). When considering spatial autocorrelation, remotely sensed variables explained 52% and abiotic variables explained 41%. Moreover, Remotely sensed variables provided better prediction at smaller grain size (<∼1,000 km), while water‐ and energy‐dominated macro‐environment variables were the most important drivers and dominated the effects of remotely sensed variables on diversity patterns at macro‐scale (>∼1,000 km). These findings indicate that while remotely sensed vegetation characteristics and climate‐dominated macro‐environment provide similar predictions for mapping grassland plant species richness, they offer complementary explanations across broad spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜林林完成签到,获得积分10
1秒前
Jessica完成签到,获得积分10
2秒前
JackMotor应助一禾采纳,获得10
2秒前
狂野乌冬面完成签到 ,获得积分10
2秒前
言不得语发布了新的文献求助30
3秒前
深情安青应助白杨采纳,获得10
3秒前
3秒前
枯荣完成签到,获得积分10
3秒前
Estrella应助纯真的雁山采纳,获得10
4秒前
5秒前
6秒前
无花果应助一地狗粮采纳,获得10
6秒前
jiangxinzhi完成签到 ,获得积分10
7秒前
8秒前
9秒前
李思晴完成签到 ,获得积分10
9秒前
10秒前
DMA50发布了新的文献求助10
10秒前
橘子完成签到 ,获得积分10
12秒前
泉水叮咚发布了新的文献求助10
12秒前
白晶晶发布了新的文献求助10
13秒前
小巧热狗关注了科研通微信公众号
13秒前
doctorbin完成签到 ,获得积分10
14秒前
Curry完成签到 ,获得积分10
16秒前
你好啊发布了新的文献求助10
16秒前
17秒前
19950728完成签到 ,获得积分10
17秒前
凡帝完成签到,获得积分10
18秒前
paws发布了新的文献求助10
18秒前
19秒前
19秒前
白杨发布了新的文献求助10
20秒前
小雅完成签到 ,获得积分10
20秒前
啊哈完成签到 ,获得积分10
22秒前
传奇3应助lshu文采纳,获得30
23秒前
小赵发布了新的文献求助20
23秒前
甄高丽完成签到,获得积分10
24秒前
25秒前
我像你完成签到,获得积分10
25秒前
含蓄的含蕾完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194