Remotely Sensed Variables Predict Grassland Diversity Better at Scales Below 1,000 km as Opposed to Abiotic Variables That Predict It Better at Larger Scales

草原 非生物成分 环境科学 多样性(政治) 比例(比率) 气候学 生态学 地理 地质学 生物 地图学 社会学 人类学
作者
Yujin Zhao,Bernhard Schmid,Zhaoju Zheng,Yang Wang,Xiaorong Wang,Yao Wang,Ziyan Chen,Xia Zhao,Dan Zhao,Yuan Zeng,Yongfei Bai
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004648
摘要

Abstract Global spatial patterns of vascular plant diversity have been mapped at coarse grain based on climate‐dominated environment–diversity relationships and, where possible, at finer grain using remote sensing. However, for grasslands with their small plant sizes, the limited availability of vegetation plot data has caused large uncertainties in fine‐grained mapping of species diversity. Here we used vegetation survey data from 1,609 field sites (>4,000 plots of 1 m 2 ), remotely sensed data (ecosystem productivity and phenology, habitat heterogeneity, functional traits and spectral diversity), and abiotic data (water‐ and energy‐related, characterizing climate‐dominated environment) together with machine learning and spatial autoregressive models to predict and map grassland species richness per 100 m 2 across the Mongolian Plateau at 500 m resolution. Combining all variables yielded a predictive accuracy of 69% compared with 64% using remotely sensed variables or 65% using abiotic variables alone. Among remotely sensed variables, functional traits showed the highest predictive power (55%) in species richness estimation, followed by productivity and phenology (48%), spectral diversity (48%) and habitat heterogeneity (48%). When considering spatial autocorrelation, remotely sensed variables explained 52% and abiotic variables explained 41%. Moreover, Remotely sensed variables provided better prediction at smaller grain size (<∼1,000 km), while water‐ and energy‐dominated macro‐environment variables were the most important drivers and dominated the effects of remotely sensed variables on diversity patterns at macro‐scale (>∼1,000 km). These findings indicate that while remotely sensed vegetation characteristics and climate‐dominated macro‐environment provide similar predictions for mapping grassland plant species richness, they offer complementary explanations across broad spatial scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助囡囡不难采纳,获得10
刚刚
蓝桉完成签到 ,获得积分10
1秒前
汉堡包应助默默的峻熙采纳,获得10
1秒前
长安发布了新的文献求助10
1秒前
1秒前
1秒前
Syyyy发布了新的文献求助10
1秒前
我是老大应助111采纳,获得10
2秒前
2秒前
Li完成签到,获得积分10
2秒前
zxdnbb发布了新的文献求助10
2秒前
kkxl完成签到,获得积分10
3秒前
酷炫的安雁完成签到 ,获得积分10
4秒前
5秒前
摸鱼ing完成签到,获得积分10
6秒前
skyangar发布了新的文献求助10
6秒前
敏哇哇哇发布了新的文献求助10
6秒前
7秒前
Jayjay发布了新的文献求助10
7秒前
Ali完成签到,获得积分10
7秒前
我我完成签到,获得积分20
7秒前
8秒前
Yi关注了科研通微信公众号
9秒前
9秒前
隐形曼青应助彩色的乐驹采纳,获得10
10秒前
10秒前
10秒前
10秒前
华仔应助柯向薇采纳,获得10
10秒前
Northtime完成签到,获得积分10
10秒前
天天快乐应助kong采纳,获得10
10秒前
Yanhai发布了新的文献求助10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
朱猪仔完成签到,获得积分20
11秒前
11秒前
隐形元绿完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123