Remotely Sensed Variables Predict Grassland Diversity Better at Scales Below 1,000 km as Opposed to Abiotic Variables That Predict It Better at Larger Scales

草原 非生物成分 环境科学 多样性(政治) 比例(比率) 气候学 生态学 地理 地质学 生物 地图学 社会学 人类学
作者
Yujin Zhao,Bernhard Schmid,Zhaoju Zheng,Yang Wang,Xiaorong Wang,Yao Wang,Ziyan Chen,Xia Zhao,Dan Zhao,Yuan Zeng,Yongfei Bai
出处
期刊:Earth’s Future [American Geophysical Union]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004648
摘要

Abstract Global spatial patterns of vascular plant diversity have been mapped at coarse grain based on climate‐dominated environment–diversity relationships and, where possible, at finer grain using remote sensing. However, for grasslands with their small plant sizes, the limited availability of vegetation plot data has caused large uncertainties in fine‐grained mapping of species diversity. Here we used vegetation survey data from 1,609 field sites (>4,000 plots of 1 m 2 ), remotely sensed data (ecosystem productivity and phenology, habitat heterogeneity, functional traits and spectral diversity), and abiotic data (water‐ and energy‐related, characterizing climate‐dominated environment) together with machine learning and spatial autoregressive models to predict and map grassland species richness per 100 m 2 across the Mongolian Plateau at 500 m resolution. Combining all variables yielded a predictive accuracy of 69% compared with 64% using remotely sensed variables or 65% using abiotic variables alone. Among remotely sensed variables, functional traits showed the highest predictive power (55%) in species richness estimation, followed by productivity and phenology (48%), spectral diversity (48%) and habitat heterogeneity (48%). When considering spatial autocorrelation, remotely sensed variables explained 52% and abiotic variables explained 41%. Moreover, Remotely sensed variables provided better prediction at smaller grain size (<∼1,000 km), while water‐ and energy‐dominated macro‐environment variables were the most important drivers and dominated the effects of remotely sensed variables on diversity patterns at macro‐scale (>∼1,000 km). These findings indicate that while remotely sensed vegetation characteristics and climate‐dominated macro‐environment provide similar predictions for mapping grassland plant species richness, they offer complementary explanations across broad spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6543210发布了新的文献求助30
刚刚
Akim应助西子阳采纳,获得10
1秒前
1秒前
skylinewjw发布了新的文献求助10
3秒前
4秒前
小王完成签到,获得积分20
4秒前
Rondab应助苏谶采纳,获得10
5秒前
6秒前
遥远的救世主完成签到,获得积分10
7秒前
瘦瘦完成签到,获得积分10
9秒前
清爽乐菱应助1717采纳,获得30
9秒前
9秒前
lulu发布了新的文献求助10
11秒前
孝顺的觅风完成签到 ,获得积分10
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
小马过河应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
CipherSage应助小王采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
花花应助科研通管家采纳,获得10
13秒前
小二郎应助西子阳采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
yar应助科研通管家采纳,获得10
13秒前
13秒前
小马过河应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
咖褐完成签到,获得积分10
15秒前
淡然依凝完成签到,获得积分10
15秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061