Remotely Sensed Variables Predict Grassland Diversity Better at Scales Below 1,000 km as Opposed to Abiotic Variables That Predict It Better at Larger Scales

草原 非生物成分 环境科学 多样性(政治) 比例(比率) 气候学 生态学 地理 地质学 生物 地图学 人类学 社会学
作者
Yujin Zhao,Bernhard Schmid,Zhaoju Zheng,Yang Wang,Xiaorong Wang,Yao Wang,Ziyan Chen,Xia Zhao,Dan Zhao,Yuan Zeng,Yongfei Bai
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (11)
标识
DOI:10.1029/2024ef004648
摘要

Abstract Global spatial patterns of vascular plant diversity have been mapped at coarse grain based on climate‐dominated environment–diversity relationships and, where possible, at finer grain using remote sensing. However, for grasslands with their small plant sizes, the limited availability of vegetation plot data has caused large uncertainties in fine‐grained mapping of species diversity. Here we used vegetation survey data from 1,609 field sites (>4,000 plots of 1 m 2 ), remotely sensed data (ecosystem productivity and phenology, habitat heterogeneity, functional traits and spectral diversity), and abiotic data (water‐ and energy‐related, characterizing climate‐dominated environment) together with machine learning and spatial autoregressive models to predict and map grassland species richness per 100 m 2 across the Mongolian Plateau at 500 m resolution. Combining all variables yielded a predictive accuracy of 69% compared with 64% using remotely sensed variables or 65% using abiotic variables alone. Among remotely sensed variables, functional traits showed the highest predictive power (55%) in species richness estimation, followed by productivity and phenology (48%), spectral diversity (48%) and habitat heterogeneity (48%). When considering spatial autocorrelation, remotely sensed variables explained 52% and abiotic variables explained 41%. Moreover, Remotely sensed variables provided better prediction at smaller grain size (<∼1,000 km), while water‐ and energy‐dominated macro‐environment variables were the most important drivers and dominated the effects of remotely sensed variables on diversity patterns at macro‐scale (>∼1,000 km). These findings indicate that while remotely sensed vegetation characteristics and climate‐dominated macro‐environment provide similar predictions for mapping grassland plant species richness, they offer complementary explanations across broad spatial scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DM发布了新的文献求助10
刚刚
刚刚
拾七完成签到,获得积分10
刚刚
sghsh完成签到,获得积分10
1秒前
干一行恨一行完成签到,获得积分10
1秒前
1秒前
十九岁的时差完成签到,获得积分10
1秒前
小蘑菇应助Jianhong采纳,获得10
2秒前
2秒前
一棵树完成签到,获得积分10
2秒前
36456657应助Katyusha采纳,获得20
2秒前
3秒前
星星完成签到,获得积分10
3秒前
科研通AI6应助敬之采纳,获得10
3秒前
4秒前
4秒前
mzmz发布了新的文献求助10
4秒前
林昊完成签到,获得积分10
4秒前
5秒前
复苏应助郭mm采纳,获得10
5秒前
samsara完成签到 ,获得积分10
5秒前
铭铭铭完成签到,获得积分10
5秒前
小米应助郭mm采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
我是老大应助九bai采纳,获得10
5秒前
6秒前
6秒前
XI_2001发布了新的文献求助10
6秒前
6秒前
6秒前
xW12123完成签到,获得积分10
7秒前
7秒前
7秒前
季秋十二发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
爱学习的小燕子完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210