清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence-based tissue segmentation and cell identification in multiplex-stained histological endometriosis sections

子宫内膜异位症 分割 病理 人工智能 多路复用 污渍 计算机科学 生物 医学 染色 生物信息学
作者
Scott E. Korman,Guus Vissers,Mark A.J. Gorris,Kiek Verrijp,Wouter P. R. Verdurmen,Michiel Simons,Sébastien Taurin,Mai S. Sater,Annemiek W. Nap,Roland Brock
出处
期刊:Human Reproduction [Oxford University Press]
标识
DOI:10.1093/humrep/deae267
摘要

Abstract STUDY QUESTION How can we best achieve tissue segmentation and cell counting of multichannel-stained endometriosis sections to understand tissue composition? SUMMARY ANSWER A combination of a machine learning-based tissue analysis software for tissue segmentation and a deep learning-based algorithm for segmentation-independent cell identification shows strong performance on the automated histological analysis of endometriosis sections. WHAT IS KNOWN ALREADY Endometriosis is characterized by the complex interplay of various cell types and exhibits great variation between patients and endometriosis subtypes. STUDY DESIGN, SIZE, DURATION Endometriosis tissue samples of eight patients of different subtypes were obtained during surgery. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometriosis tissue was formalin-fixed and paraffin-embedded before sectioning and staining by (multiplex) immunohistochemistry. A 6-plex immunofluorescence panel in combination with a nuclear stain was established following a standardized protocol. This panel enabled the distinction of different tissue structures and dividing cells. Artificial intelligence-based tissue and cell phenotyping were employed to automatically segment the various tissue structures and extract quantitative features. MAIN RESULTS AND THE ROLE OF CHANCE An endometriosis-specific multiplex panel comprised of PanCK, CD10, α-SMA, calretinin, CD45, Ki67, and DAPI enabled the distinction of tissue structures in endometriosis. Whereas a machine learning approach enabled a reliable segmentation of tissue substructure, for cell identification, the segmentation-free deep learning-based algorithm was superior. LIMITATIONS, REASONS FOR CAUTION The present analysis was conducted on a limited number of samples for method establishment. For further refinement, quantification of collagen-rich cell-free areas should be included which could further enhance the assessment of the extent of fibrotic changes. Moreover, the method should be applied to a larger number of samples to delineate subtype-specific differences. WIDER IMPLICATIONS OF THE FINDINGS We demonstrate the great potential of combining multiplex staining and cell phenotyping for endometriosis research. The optimization procedure of the multiplex panel was transferred from a cancer-related project, demonstrating the robustness of the procedure beyond the cancer context. This panel can be employed for larger batch analyses. Furthermore, we demonstrate that the deep learning-based approach is capable of performing cell phenotyping on tissue types that were not part of the training set underlining the potential of the method for heterogenous endometriosis samples. STUDY FUNDING/COMPETING INTEREST(S) All funding was provided through departmental funds. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五岳三鸟完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
31秒前
白衣胜雪完成签到 ,获得积分10
36秒前
52秒前
方白秋完成签到,获得积分10
1分钟前
LFY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
机灵的问萍完成签到,获得积分10
1分钟前
2分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Ji发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
李健应助ZXX采纳,获得10
4分钟前
4分钟前
4分钟前
ZXX发布了新的文献求助10
4分钟前
等待安莲关注了科研通微信公众号
4分钟前
5分钟前
5分钟前
等待安莲发布了新的文献求助30
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
SCI完成签到,获得积分10
7分钟前
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041977
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887