Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

自行车 启发式 交通拥挤 计算机科学 运输工程 TRIPS体系结构 可持续运输 交通规划 模式选择 持续性 公共交通 地理 工程类 生物 操作系统 考古 生态学
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00775
摘要

Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, reallocating road capacity to cycling is often contentious because of the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model, which combines an inverse optimization method for predicting driving times with an instrumental variables method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects paths in a road network for bike lane installation while endogenizing cycling demand and driving travel times. We conduct an empirical study on the City of Chicago that brings together several data sets that describe the urban environment—including the road and bike lane networks, vehicle flows, commuter mode choices, bike share trips, driving and cycling routes, demographic features, and points of interest—with the goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most a 9.4% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to urban infrastructure planning. This paper was accepted by Karan Girotra, operations management. Funding: Funding: The authors acknowledge funding from the UCLA Anderson Easton Technology Management Center (Siddiq & Zhang) and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950] and TD-MDAL Research Grant from the Rotman School of Management (Liu). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的寄容完成签到 ,获得积分10
刚刚
han完成签到,获得积分10
1秒前
3秒前
华仔应助slf采纳,获得10
4秒前
涓涓溪水完成签到,获得积分10
5秒前
gemini0615发布了新的文献求助10
5秒前
打打应助陈卓采纳,获得10
6秒前
hsy发布了新的文献求助10
8秒前
Alice发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
10秒前
wanci应助cherlia采纳,获得30
10秒前
霸王丹完成签到,获得积分10
10秒前
科目三应助cassiecx采纳,获得10
11秒前
lzz关闭了lzz文献求助
11秒前
意意完成签到,获得积分10
11秒前
大鼻子小狗完成签到 ,获得积分10
11秒前
所所应助五块钱采纳,获得10
13秒前
身处人海发布了新的文献求助10
13秒前
清零发布了新的文献求助10
13秒前
意意发布了新的文献求助10
14秒前
致远发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
爆米花发布了新的文献求助30
16秒前
干净之槐完成签到,获得积分10
19秒前
20秒前
可爱的函函应助林薯条采纳,获得10
20秒前
淡淡尔烟发布了新的文献求助10
21秒前
21秒前
温偏烫发布了新的文献求助10
22秒前
五块钱完成签到,获得积分10
23秒前
wanci应助orange9采纳,获得10
23秒前
文森特的向日葵完成签到,获得积分10
23秒前
24秒前
cctv18应助虞剑采纳,获得10
24秒前
25秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422593
求助须知:如何正确求助?哪些是违规求助? 3022882
关于积分的说明 8903083
捐赠科研通 2710404
什么是DOI,文献DOI怎么找? 1486403
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682285