Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

自行车 启发式 交通拥挤 计算机科学 运输工程 TRIPS体系结构 可持续运输 交通规划 模式选择 持续性 公共交通 地理 工程类 生物 操作系统 考古 生态学
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.00775
摘要

Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, reallocating road capacity to cycling is often contentious because of the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model, which combines an inverse optimization method for predicting driving times with an instrumental variables method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects paths in a road network for bike lane installation while endogenizing cycling demand and driving travel times. We conduct an empirical study on the City of Chicago that brings together several data sets that describe the urban environment—including the road and bike lane networks, vehicle flows, commuter mode choices, bike share trips, driving and cycling routes, demographic features, and points of interest—with the goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most a 9.4% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to urban infrastructure planning. This paper was accepted by Karan Girotra, operations management. Funding: Funding: The authors acknowledge funding from the UCLA Anderson Easton Technology Management Center (Siddiq & Zhang) and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950] and TD-MDAL Research Grant from the Rotman School of Management (Liu). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘻嘻完成签到 ,获得积分10
2秒前
金福珠发布了新的文献求助10
3秒前
3秒前
可爱的函函应助luilui0000采纳,获得10
4秒前
天天快乐应助ll采纳,获得10
4秒前
爆米花应助jzzj采纳,获得10
4秒前
6秒前
傅宛白完成签到,获得积分10
7秒前
斯文败类应助peng采纳,获得10
8秒前
傅宛白发布了新的文献求助10
9秒前
李子完成签到,获得积分10
10秒前
无花果应助萌酱采纳,获得10
10秒前
11秒前
13秒前
14秒前
汤锐发布了新的文献求助10
14秒前
me完成签到,获得积分10
14秒前
人人完成签到,获得积分10
14秒前
李健应助林莹采纳,获得10
15秒前
15秒前
15秒前
彭于晏应助洁净思枫采纳,获得30
16秒前
量子星尘发布了新的文献求助10
16秒前
zzz发布了新的文献求助10
16秒前
wj发布了新的文献求助10
17秒前
ccc完成签到 ,获得积分10
17秒前
18秒前
感动尔曼完成签到 ,获得积分10
18秒前
脑洞疼应助都选C采纳,获得10
19秒前
wanci应助流觞采纳,获得30
19秒前
YaoHui发布了新的文献求助10
20秒前
科研通AI6应助伶俐的向彤采纳,获得20
20秒前
月落无痕97完成签到 ,获得积分0
20秒前
我是老大应助tguczf采纳,获得10
20秒前
23秒前
调皮千兰完成签到,获得积分10
24秒前
隐形曼青应助自由的便当采纳,获得10
24秒前
24秒前
天真枫完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626754
求助须知:如何正确求助?哪些是违规求助? 4712621
关于积分的说明 14960174
捐赠科研通 4782571
什么是DOI,文献DOI怎么找? 2554510
邀请新用户注册赠送积分活动 1516153
关于科研通互助平台的介绍 1476438