Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

自行车 启发式 交通拥挤 计算机科学 运输工程 TRIPS体系结构 可持续运输 交通规划 模式选择 持续性 公共交通 地理 工程类 生态学 考古 生物 操作系统
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00775
摘要

Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, reallocating road capacity to cycling is often contentious because of the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model, which combines an inverse optimization method for predicting driving times with an instrumental variables method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects paths in a road network for bike lane installation while endogenizing cycling demand and driving travel times. We conduct an empirical study on the City of Chicago that brings together several data sets that describe the urban environment—including the road and bike lane networks, vehicle flows, commuter mode choices, bike share trips, driving and cycling routes, demographic features, and points of interest—with the goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most a 9.4% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to urban infrastructure planning. This paper was accepted by Karan Girotra, operations management. Funding: Funding: The authors acknowledge funding from the UCLA Anderson Easton Technology Management Center (Siddiq & Zhang) and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950] and TD-MDAL Research Grant from the Rotman School of Management (Liu). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
萤火发布了新的文献求助10
5秒前
lifeboast发布了新的文献求助10
5秒前
充电宝应助潮小坤采纳,获得10
6秒前
勾勾1991完成签到,获得积分10
7秒前
7秒前
中和皇极应助乱武采纳,获得10
7秒前
科研通AI5应助天真的高山采纳,获得10
8秒前
8秒前
杜嘟嘟完成签到,获得积分10
10秒前
11秒前
panjunlu发布了新的文献求助10
12秒前
ZAL发布了新的文献求助10
12秒前
小二郎应助Minerva采纳,获得10
13秒前
15秒前
16秒前
SSSSCCCCIIII完成签到,获得积分10
16秒前
墨然然完成签到 ,获得积分10
16秒前
古芍昂发布了新的文献求助10
17秒前
宋云媚发布了新的文献求助10
20秒前
Sw发布了新的文献求助10
20秒前
22秒前
酷波er应助古芍昂采纳,获得10
25秒前
宋云媚完成签到,获得积分20
26秒前
29秒前
好好科研发布了新的文献求助10
29秒前
30秒前
云影cns完成签到 ,获得积分10
31秒前
Minerva完成签到,获得积分20
32秒前
潮小坤完成签到,获得积分10
33秒前
GGbound发布了新的文献求助10
34秒前
35秒前
35秒前
Minerva发布了新的文献求助10
35秒前
38秒前
38秒前
38秒前
39秒前
高骏伟发布了新的文献求助10
39秒前
Sw完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662