亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

自行车 启发式 交通拥挤 计算机科学 运输工程 TRIPS体系结构 可持续运输 交通规划 模式选择 持续性 公共交通 地理 工程类 生物 操作系统 考古 生态学
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.00775
摘要

Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, reallocating road capacity to cycling is often contentious because of the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model, which combines an inverse optimization method for predicting driving times with an instrumental variables method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects paths in a road network for bike lane installation while endogenizing cycling demand and driving travel times. We conduct an empirical study on the City of Chicago that brings together several data sets that describe the urban environment—including the road and bike lane networks, vehicle flows, commuter mode choices, bike share trips, driving and cycling routes, demographic features, and points of interest—with the goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most a 9.4% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to urban infrastructure planning. This paper was accepted by Karan Girotra, operations management. Funding: Funding: The authors acknowledge funding from the UCLA Anderson Easton Technology Management Center (Siddiq & Zhang) and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950] and TD-MDAL Research Grant from the Rotman School of Management (Liu). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666完成签到,获得积分10
4秒前
123完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
殷楷霖发布了新的文献求助10
13秒前
17秒前
18秒前
18秒前
冷酷哈密瓜完成签到,获得积分10
21秒前
科研帽发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
吞吞完成签到 ,获得积分10
24秒前
端庄千青发布了新的文献求助10
25秒前
土豪的洋葱完成签到,获得积分10
25秒前
Ahan发布了新的文献求助10
26秒前
26秒前
Yingzi发布了新的文献求助10
28秒前
Orange应助端庄千青采纳,获得10
31秒前
Ahan完成签到,获得积分10
31秒前
殷楷霖发布了新的文献求助10
32秒前
arui发布了新的文献求助10
33秒前
41秒前
45秒前
超级灰狼完成签到 ,获得积分10
49秒前
49秒前
深情安青应助小左采纳,获得10
52秒前
殷楷霖发布了新的文献求助10
53秒前
54秒前
无奈母鸡发布了新的文献求助10
55秒前
呐呐呐呐呐呐完成签到,获得积分10
1分钟前
大模型应助ontheway采纳,获得200
1分钟前
耶啵耶啵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
无奈母鸡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
青柠发布了新的文献求助10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644480
求助须知:如何正确求助?哪些是违规求助? 4764238
关于积分的说明 15025149
捐赠科研通 4802869
什么是DOI,文献DOI怎么找? 2567659
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484792