Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection

自行车 启发式 交通拥挤 计算机科学 运输工程 TRIPS体系结构 可持续运输 交通规划 模式选择 持续性 公共交通 地理 工程类 生物 操作系统 考古 生态学
作者
Sheng Liu,Auyon Siddiq,Jingwei Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.00775
摘要

Urban infrastructure is vital for sustainable cities. In recent years, municipal governments have invested heavily in the expansion of bike lane networks to meet growing demand, promote ridership, and reduce emissions. However, reallocating road capacity to cycling is often contentious because of the risk of amplifying traffic congestion. In this paper, we develop a method for planning bike lanes that accounts for ridership and congestion effects. We first present a procedure for estimating parameters of a traffic equilibrium model, which combines an inverse optimization method for predicting driving times with an instrumental variables method for estimating a commuter mode choice model. We then formulate a prescriptive model that selects paths in a road network for bike lane installation while endogenizing cycling demand and driving travel times. We conduct an empirical study on the City of Chicago that brings together several data sets that describe the urban environment—including the road and bike lane networks, vehicle flows, commuter mode choices, bike share trips, driving and cycling routes, demographic features, and points of interest—with the goal of estimating the impact of expanding Chicago’s bike lane network. We estimate that adding 25 miles of bike lanes as prescribed by our model can lift cycling ridership from 3.6% to 6.1%, with at most a 9.4% increase in driving times. We also find that three intuitive heuristics for bike lane planning can lead to lower ridership and worse congestion outcomes, highlighting the value of a holistic and data-driven approach to urban infrastructure planning. This paper was accepted by Karan Girotra, operations management. Funding: Funding: The authors acknowledge funding from the UCLA Anderson Easton Technology Management Center (Siddiq & Zhang) and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950] and TD-MDAL Research Grant from the Rotman School of Management (Liu). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.00775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
呵呵呵呵发布了新的文献求助10
1秒前
流也完成签到,获得积分10
2秒前
wh发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
星辰大海应助OK采纳,获得10
3秒前
3秒前
ninico完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
顾矜应助吕喜梅采纳,获得10
4秒前
彩色碧菡完成签到,获得积分10
4秒前
颖火虫发布了新的文献求助10
5秒前
zq完成签到,获得积分10
5秒前
舒适的初雪完成签到,获得积分10
5秒前
欧科狗完成签到,获得积分10
5秒前
qaqfdmmj发布了新的文献求助10
6秒前
Baize完成签到,获得积分10
6秒前
7秒前
科研通AI6应助hhc采纳,获得10
7秒前
7秒前
任性映秋发布了新的文献求助10
7秒前
走四方发布了新的文献求助20
7秒前
8秒前
刘娇娇完成签到,获得积分10
9秒前
ytzhang0587给SV的求助进行了留言
9秒前
未来科研大佬完成签到,获得积分20
9秒前
QQ完成签到 ,获得积分10
9秒前
9秒前
1911988020发布了新的文献求助10
9秒前
10秒前
最爱吃芒果完成签到,获得积分10
10秒前
orixero应助西西采纳,获得10
10秒前
zhaoyuepu完成签到,获得积分10
11秒前
Zkxxxx发布了新的文献求助10
12秒前
领导范儿应助Tian采纳,获得30
13秒前
小羊发布了新的文献求助10
13秒前
sean完成签到,获得积分10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726