Robust Autism Spectrum Disorder‐Related Spatial Covariance Gray Matter Pattern Revealed With a Large‐Scale Multi‐Center Dataset

自闭症谱系障碍 自闭症 心理学 协方差 灰色(单位) 地图学 模式识别(心理学) 认知心理学 发展心理学 地理 统计 医学 数学 放射科
作者
Sheng‐Zhi Ma,Xiaoying Wang,Chen Yang,Wen‐Qiang Dong,Dandan Chen,Chao Song,Qiurong Zhang,Yu‐Feng Zang,Li‐Xia Yuan
出处
期刊:Autism Research [Wiley]
标识
DOI:10.1002/aur.3303
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms. We utilized T1-weighted structural MRI images (sMRI) of 576 subjects (288 ASDs and 288 typically developing (TD) controls) aged 7-29 years from the Autism Brain Imaging Data Exchange II (ABIDE II) dataset. These images were analyzed with SSM-PCA to identify the ASD-related spatial covariance pattern. Subsequently, we investigated the relationship between the pattern and clinical symptoms and verified its robustness. Then, the applicability of the pattern under different age stages were further explored. The results revealed that the ASD-related pattern primarily involves the thalamus, putamen, parahippocampus, orbitofrontal cortex, and cerebellum. The expression of this pattern correlated with Social Response Scale and Social Communication Questionnaire scores. Moreover, the ASD-related pattern was robust for the ABIDE I dataset. Regarding the applicability of the pattern for different age stages, the effect sizes of its expression in ASD were medium in the children and adults, while small in adolescents. This study identified a robust ASD-related pattern based on gray matter volume that is associated with social deficits. Our findings provide new insights into the neuroanatomical mechanisms of ASD and may facilitate its future intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jscr完成签到,获得积分10
2秒前
aaqw_8完成签到,获得积分10
3秒前
Cheshire完成签到,获得积分10
4秒前
鲤鱼鸽子完成签到,获得积分10
4秒前
咩咩咩咩发布了新的文献求助10
5秒前
6秒前
6秒前
juice完成签到 ,获得积分10
7秒前
愉快的白桃完成签到,获得积分10
8秒前
pp完成签到,获得积分10
9秒前
贤惠的早晨完成签到,获得积分10
9秒前
10秒前
路路有为完成签到 ,获得积分10
10秒前
wsh071117发布了新的文献求助10
11秒前
tyt完成签到 ,获得积分10
12秒前
越遇完成签到 ,获得积分10
12秒前
Theodore完成签到,获得积分10
15秒前
Xii完成签到 ,获得积分10
15秒前
16秒前
Thea完成签到,获得积分10
16秒前
baoxiaozhai完成签到 ,获得积分10
18秒前
Xiaoyan完成签到,获得积分10
19秒前
ckl完成签到,获得积分10
19秒前
谦让蛋挞完成签到 ,获得积分10
20秒前
Zhang完成签到,获得积分10
20秒前
缘分完成签到,获得积分10
21秒前
欣慰小蕊完成签到,获得积分10
27秒前
27秒前
28秒前
少年旭完成签到,获得积分10
28秒前
三杠完成签到 ,获得积分10
29秒前
崔梦楠完成签到 ,获得积分10
29秒前
冲冲冲完成签到,获得积分10
29秒前
hongjie_w发布了新的文献求助10
29秒前
waiting完成签到 ,获得积分10
30秒前
Legend_完成签到 ,获得积分10
31秒前
DHY发布了新的文献求助10
33秒前
SY发布了新的文献求助10
33秒前
Kenina完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539176
求助须知:如何正确求助?哪些是违规求助? 3116747
关于积分的说明 9326762
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547047
邀请新用户注册赠送积分活动 720734
科研通“疑难数据库(出版商)”最低求助积分说明 712201