Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chengshaoyan发布了新的文献求助10
刚刚
刚刚
橘子完成签到,获得积分10
刚刚
1秒前
1秒前
橘子发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助150
4秒前
从前完成签到,获得积分10
4秒前
sanjya发布了新的文献求助10
4秒前
马俊完成签到,获得积分10
4秒前
马达尬尬发布了新的文献求助10
5秒前
哈哈哈发布了新的文献求助10
5秒前
zlx完成签到 ,获得积分10
5秒前
沉青发布了新的文献求助20
6秒前
胡砚之完成签到,获得积分10
7秒前
万能图书馆应助Emily采纳,获得10
7秒前
TLB完成签到,获得积分10
9秒前
丘比特应助煜琪采纳,获得10
9秒前
脑洞疼应助欣喜战斗机采纳,获得10
9秒前
风清扬应助不二采纳,获得10
10秒前
针真滴完成签到 ,获得积分10
10秒前
11秒前
勤劳的飞飞完成签到,获得积分10
11秒前
苹果蜗牛完成签到 ,获得积分10
11秒前
马达尬尬完成签到,获得积分10
11秒前
xxp完成签到 ,获得积分10
12秒前
领导范儿应助拜了个拜采纳,获得10
12秒前
12秒前
Stride完成签到,获得积分10
12秒前
哈哈哈完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
岸芷汀兰完成签到,获得积分10
13秒前
15秒前
微笑完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
lxj完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911732
求助须知:如何正确求助?哪些是违规求助? 4187158
关于积分的说明 13003078
捐赠科研通 3955101
什么是DOI,文献DOI怎么找? 2168564
邀请新用户注册赠送积分活动 1187030
关于科研通互助平台的介绍 1094282