Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xia采纳,获得30
1秒前
舒心半梦发布了新的文献求助10
2秒前
欢欢发布了新的文献求助10
2秒前
All_fly发布了新的文献求助10
3秒前
weimin关注了科研通微信公众号
4秒前
April发布了新的文献求助10
4秒前
7秒前
舒适梨愁发布了新的文献求助10
7秒前
汉堡包应助刻苦羽毛采纳,获得30
9秒前
浮游应助XL神放采纳,获得10
9秒前
科研通AI6应助he采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
酷波er应助小路采纳,获得10
11秒前
江楠发布了新的文献求助10
11秒前
超级Huan完成签到,获得积分10
11秒前
zhangzhaoxin完成签到,获得积分10
11秒前
tt驳回了cc应助
12秒前
酱酱完成签到,获得积分10
12秒前
12秒前
答案加载中完成签到 ,获得积分10
14秒前
雷家发布了新的文献求助10
14秒前
xn201120发布了新的文献求助10
15秒前
15秒前
16秒前
深情安青应助养生坤坤采纳,获得10
16秒前
汉堡包应助赵浩楠采纳,获得10
17秒前
18秒前
18秒前
缥缈橘子发布了新的文献求助10
18秒前
阳光谷完成签到,获得积分10
18秒前
美好的冰蓝完成签到 ,获得积分10
19秒前
lixiaorui发布了新的文献求助10
20秒前
科研通AI6应助江楠采纳,获得10
21秒前
酷波er应助雨雨爱薯条采纳,获得10
21秒前
852应助qq采纳,获得10
21秒前
22秒前
阳光谷发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091