Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
务实小鸽子完成签到 ,获得积分10
刚刚
兰彻发布了新的文献求助10
2秒前
纯纯的秦完成签到 ,获得积分10
2秒前
2秒前
小二郎应助枯木逢春采纳,获得10
2秒前
duoduo发布了新的文献求助10
2秒前
XHY发布了新的文献求助10
3秒前
3秒前
闪闪的又亦完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助思维隋采纳,获得10
4秒前
打打应助大亚基采纳,获得10
4秒前
濮阳映萱发布了新的文献求助10
4秒前
4秒前
orixero应助77采纳,获得10
5秒前
Ginkgo发布了新的文献求助10
5秒前
慕青应助奔跑的棉花采纳,获得10
5秒前
5秒前
海风完成签到,获得积分10
6秒前
隐形曼青应助xixilulixiu采纳,获得10
6秒前
7秒前
yaoqiangshi发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
欣喜念桃完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
吴灵完成签到,获得积分10
10秒前
10秒前
传奇3应助Chengcheng采纳,获得10
10秒前
10秒前
小二郎应助4444采纳,获得10
11秒前
xctdyl1992发布了新的文献求助10
11秒前
11秒前
丘比特应助四夕采纳,获得10
11秒前
林碧完成签到,获得积分10
12秒前
SEM小菜鸡发布了新的文献求助30
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059