Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李某完成签到,获得积分10
1秒前
酷波er应助jzmupyj采纳,获得10
1秒前
沉静念烟完成签到,获得积分10
1秒前
火星上大开完成签到,获得积分10
2秒前
3秒前
KeZhihong完成签到,获得积分10
3秒前
日月※城完成签到,获得积分10
4秒前
南栀完成签到 ,获得积分10
4秒前
roger发布了新的文献求助10
4秒前
所爱皆在完成签到 ,获得积分10
5秒前
领导范儿应助Viyo采纳,获得10
5秒前
6秒前
Nyuki完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
隐形曼青应助张子健采纳,获得10
7秒前
ZuoqiHe完成签到,获得积分10
8秒前
B_lue完成签到 ,获得积分10
8秒前
vampirell完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
体贴板栗关注了科研通微信公众号
10秒前
11秒前
11秒前
消消消消气完成签到 ,获得积分10
11秒前
无限知能完成签到,获得积分20
11秒前
标致的冷梅完成签到,获得积分10
11秒前
淘小乐发布了新的文献求助10
13秒前
雨辰完成签到 ,获得积分10
14秒前
14秒前
forever完成签到 ,获得积分10
15秒前
123发布了新的文献求助10
15秒前
罗美女应助化工兔采纳,获得10
15秒前
15秒前
健壮可冥完成签到 ,获得积分10
15秒前
111完成签到,获得积分10
15秒前
suiwuya完成签到,获得积分10
15秒前
多情如容完成签到 ,获得积分10
15秒前
呆萌芙蓉完成签到 ,获得积分10
15秒前
建羽完成签到 ,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698860
求助须知:如何正确求助?哪些是违规求助? 5127041
关于积分的说明 15222713
捐赠科研通 4853854
什么是DOI,文献DOI怎么找? 2604340
邀请新用户注册赠送积分活动 1555814
关于科研通互助平台的介绍 1514139