已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TQ发布了新的文献求助10
刚刚
1秒前
支支发布了新的文献求助10
2秒前
炳楷完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
falling_learning完成签到 ,获得积分10
3秒前
kk完成签到,获得积分10
4秒前
4秒前
5秒前
XIX发布了新的文献求助10
5秒前
科研通AI2S应助杨温暖采纳,获得10
9秒前
RC_Wang发布了新的文献求助10
9秒前
Lucky发布了新的文献求助10
10秒前
12秒前
刘三哥完成签到 ,获得积分10
14秒前
灵巧的月光完成签到 ,获得积分10
15秒前
学勋发布了新的文献求助10
16秒前
疯狂的冷荷完成签到,获得积分20
16秒前
18秒前
爆米花应助Lucky采纳,获得10
18秒前
红白夹心升糖完成签到,获得积分20
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
Orange应助科研通管家采纳,获得10
20秒前
Fancy应助科研通管家采纳,获得100
21秒前
无名应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
无名应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
无名应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779281
求助须知:如何正确求助?哪些是违规求助? 5646668
关于积分的说明 15451607
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642806
邀请新用户注册赠送积分活动 1590481
关于科研通互助平台的介绍 1544838