Unified dimensionality reduction techniques in chronic liver disease detection

降维 还原(数学) 慢性肝病 计算机科学 人工智能 疾病 模式识别(心理学) 医学 数学 内科学 肝硬化 几何学
作者
Alina Karna,Naila Zaman Khan,Rahul Rauniyar,Prashant Giridhar Shambharkar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.21156
摘要

Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihil发布了新的文献求助10
刚刚
小宇发布了新的文献求助10
1秒前
tuotuo完成签到 ,获得积分10
1秒前
苗条一兰完成签到,获得积分10
1秒前
2秒前
中工完成签到 ,获得积分10
2秒前
3秒前
VDC发布了新的文献求助10
3秒前
REN发布了新的文献求助20
3秒前
盼盼完成签到,获得积分10
4秒前
脑洞疼应助半生采纳,获得30
4秒前
东东完成签到,获得积分10
4秒前
中岛悠斗完成签到,获得积分10
4秒前
LuLan0401完成签到,获得积分10
5秒前
5秒前
语秋完成签到,获得积分10
5秒前
耍酷青梦完成签到 ,获得积分10
5秒前
充电宝应助xhy采纳,获得10
5秒前
陈海伦完成签到 ,获得积分10
6秒前
6秒前
6秒前
小汤圆发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
曾曾完成签到,获得积分10
7秒前
721完成签到,获得积分10
8秒前
糟糕的雪糕完成签到,获得积分10
8秒前
谁能拒绝周杰伦呢完成签到,获得积分10
8秒前
MM完成签到,获得积分10
8秒前
千幻完成签到,获得积分10
8秒前
8秒前
完美世界应助娜行采纳,获得10
9秒前
Again完成签到,获得积分10
9秒前
科研小菜鸟完成签到,获得积分20
9秒前
胡枝子完成签到,获得积分10
10秒前
苹果从菡完成签到,获得积分10
10秒前
ooseabiscuit完成签到,获得积分10
10秒前
10秒前
淡淡的雪发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672