Radiology Report Annotation Using Generative Large Language Models: Comparative Analysis

计算机科学 背景(考古学) 自动汇总 相似性(几何) 注释 多样性(控制论) 自然语言处理 语义相似性 文档 领域(数学) 情报检索 人工智能 图像(数学) 生物 古生物学 程序设计语言 纯数学 数学
作者
Bayan Altalla’,Ashraf Ahmad,Layla Bitar,Mohammed Al-Bssol,Amal Al‐Omari,Iyad Sultan
出处
期刊:International Journal of Biomedical Imaging [Hindawi Limited]
卷期号:2025 (1)
标识
DOI:10.1155/ijbi/5019035
摘要

Recent advancements in large language models (LLMs), particularly GPT‐3.5 and GPT‐4, have sparked significant interest in their application within the medical field. This research offers a detailed comparative analysis of the abilities of GPT‐3.5 and GPT‐4 in the context of annotating radiology reports and generating impressions from chest computed tomography (CT) scans. The primary objective is to use these models to assist healthcare professionals in handling routine documentation tasks. Employing methods such as in‐context learning (ICL) and retrieval‐augmented generation (RAG), the study focused on generating impression sections from radiological findings. Comprehensive evaluation was applied using a variety of metrics, including recall‐oriented understudy for gisting evaluation (ROUGE) for n‐gram analysis, Instructor Similarity for contextual similarity, and BERTScore for semantic similarity, to assess the performance of these models. The study shows distinct performance differences between GPT‐3.5 and GPT‐4 across both zero‐shot and few‐shot learning scenarios. It was observed that certain prompts significantly influenced the performance outcomes, with specific prompts leading to more accurate impressions. The RAG method achieved a superior BERTScore of 0.92, showcasing its ability to generate semantically rich and contextually accurate impressions. In contrast, GPT‐3.5 and GPT‐4 excel in preserving language tone, with Instructor Similarity scores of approximately 0.92 across scenarios, underscoring the importance of prompt design in effective summarization tasks. The findings of this research emphasize the critical role of prompt design in optimizing model efficacy and point to the significant potential for further exploration in prompt engineering. Moreover, the study advocates for the standardized integration of such advanced LLMs in healthcare practices, highlighting their potential to enhance the efficiency and accuracy of medical documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摇光完成签到,获得积分10
刚刚
woobinhua完成签到,获得积分10
1秒前
pxy完成签到,获得积分10
1秒前
斗图不怕输完成签到,获得积分10
1秒前
annafan应助科研通管家采纳,获得10
2秒前
安静一曲完成签到 ,获得积分10
2秒前
小马甲应助波波波波波6764采纳,获得10
3秒前
kingwill应助涛涛子采纳,获得20
3秒前
负责小蜜蜂完成签到,获得积分10
3秒前
yuhaha完成签到,获得积分10
4秒前
pxy关闭了pxy文献求助
4秒前
神勇友灵完成签到,获得积分10
4秒前
wcuzhl给wcuzhl的求助进行了留言
5秒前
ZHANG完成签到,获得积分10
6秒前
难过的俊驰完成签到,获得积分20
6秒前
Lillian完成签到,获得积分10
7秒前
ding应助等待秀采纳,获得10
8秒前
芝麻芝麻开门完成签到,获得积分10
8秒前
醉生梦死完成签到 ,获得积分10
9秒前
9秒前
十年完成签到 ,获得积分10
10秒前
笨本呦完成签到 ,获得积分10
11秒前
Tokgo完成签到,获得积分10
12秒前
真三完成签到,获得积分10
12秒前
12秒前
科研小天才完成签到,获得积分10
13秒前
清澄完成签到,获得积分10
14秒前
mg完成签到,获得积分10
14秒前
cx完成签到,获得积分10
15秒前
TiY完成签到 ,获得积分10
15秒前
rgjipeng完成签到,获得积分10
15秒前
喜之郎完成签到,获得积分10
16秒前
板栗完成签到,获得积分10
16秒前
不工作没饭吃完成签到,获得积分10
16秒前
djdh完成签到 ,获得积分10
17秒前
18秒前
PSPI发布了新的文献求助10
18秒前
文献查找发布了新的文献求助10
19秒前
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466885
求助须知:如何正确求助?哪些是违规求助? 3059739
关于积分的说明 9067681
捐赠科研通 2750226
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696945