Radiology Report Annotation Using Generative Large Language Models: Comparative Analysis

计算机科学 背景(考古学) 自动汇总 相似性(几何) 注释 多样性(控制论) 自然语言处理 语义相似性 文档 领域(数学) 情报检索 人工智能 图像(数学) 古生物学 数学 纯数学 生物 程序设计语言
作者
Bayan Altalla’,Ashraf Ahmad,Layla Bitar,Mohammed Al-Bssol,Amal Al‐Omari,Iyad Sultan
出处
期刊:International Journal of Biomedical Imaging [Hindawi Publishing Corporation]
卷期号:2025 (1)
标识
DOI:10.1155/ijbi/5019035
摘要

Recent advancements in large language models (LLMs), particularly GPT‐3.5 and GPT‐4, have sparked significant interest in their application within the medical field. This research offers a detailed comparative analysis of the abilities of GPT‐3.5 and GPT‐4 in the context of annotating radiology reports and generating impressions from chest computed tomography (CT) scans. The primary objective is to use these models to assist healthcare professionals in handling routine documentation tasks. Employing methods such as in‐context learning (ICL) and retrieval‐augmented generation (RAG), the study focused on generating impression sections from radiological findings. Comprehensive evaluation was applied using a variety of metrics, including recall‐oriented understudy for gisting evaluation (ROUGE) for n‐gram analysis, Instructor Similarity for contextual similarity, and BERTScore for semantic similarity, to assess the performance of these models. The study shows distinct performance differences between GPT‐3.5 and GPT‐4 across both zero‐shot and few‐shot learning scenarios. It was observed that certain prompts significantly influenced the performance outcomes, with specific prompts leading to more accurate impressions. The RAG method achieved a superior BERTScore of 0.92, showcasing its ability to generate semantically rich and contextually accurate impressions. In contrast, GPT‐3.5 and GPT‐4 excel in preserving language tone, with Instructor Similarity scores of approximately 0.92 across scenarios, underscoring the importance of prompt design in effective summarization tasks. The findings of this research emphasize the critical role of prompt design in optimizing model efficacy and point to the significant potential for further exploration in prompt engineering. Moreover, the study advocates for the standardized integration of such advanced LLMs in healthcare practices, highlighting their potential to enhance the efficiency and accuracy of medical documentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山完成签到 ,获得积分10
2秒前
3秒前
胖胖发布了新的文献求助10
3秒前
4秒前
博雅雅雅雅雅完成签到,获得积分10
5秒前
华仔应助陈亮采纳,获得10
5秒前
勤奋的夜春完成签到,获得积分20
6秒前
everglow发布了新的文献求助30
8秒前
琥珀川完成签到,获得积分10
8秒前
愉快之槐完成签到,获得积分10
9秒前
Owen应助悦耳听芹采纳,获得10
9秒前
沙世平完成签到,获得积分10
10秒前
科研小蔡发布了新的文献求助30
10秒前
10秒前
11秒前
甜椒完成签到,获得积分10
11秒前
11秒前
13秒前
劲秉应助英俊的小恐龙采纳,获得10
13秒前
liherong完成签到,获得积分10
13秒前
14秒前
方园完成签到,获得积分10
14秒前
14秒前
everglow完成签到,获得积分10
14秒前
WHITE完成签到,获得积分10
16秒前
陈亮发布了新的文献求助10
17秒前
南瓜头完成签到 ,获得积分10
18秒前
oui发布了新的文献求助10
19秒前
19秒前
Oliver发布了新的文献求助10
20秒前
斯文败类应助沉默的幻枫采纳,获得10
21秒前
橘子屿布丁完成签到,获得积分10
22秒前
一碘碘Q完成签到,获得积分10
22秒前
23秒前
悦耳听芹发布了新的文献求助10
23秒前
23秒前
u深度完成签到 ,获得积分10
25秒前
yanjiuhuzu完成签到,获得积分10
27秒前
lin应助lzylzy采纳,获得10
29秒前
务实青筠完成签到 ,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736852
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10020999
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749698