Errors are robustly tamed in cumulative knowledge processes

启发式 计算机科学 简单(哲学) 概率逻辑 对抗制 有界函数 分数(化学) 过程(计算) 理论计算机科学 人工智能 数学 认识论 程序设计语言 数学分析 哲学 化学 有机化学 操作系统
作者
Anna Brandenberger,Cassandra Marcussen,Elchanan Mossel,Madhu Sudan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (5)
标识
DOI:10.1073/pnas.2416866122
摘要

As knowledge accumulates in science and society in a distributed fashion, erroneous derivations can be introduced into the corpus of knowledge. Such derivations can compromise the validity of any units of knowledge that rely on them in the future. Can societal knowledge maintain some level of integrity given simple distributed error-checking mechanisms? In this paper, we investigate the following formulation of the question: assuming that a constant fraction of the new derivations is wrong, is it possible for simple error-checking mechanisms that apply when a new unit of knowledge is derived to maintain the integrity of the corpus of knowledge? This question was introduced by Ben-Eliezer et al. [“Is this correct? Let’s check!” in 14th Innovations in Theoretical Computer Science Conference (ITCS, 2023)], who gave a robust affirmative answer in a specific probabilistic model for knowledge accumulation. Namely, this model required that new units depend on just one existing unit and join the process according to a preferential attachment rule. In this work, we consider much more general families of processes of knowledge accumulation, where new units may depend on multiple existing units and join according to varied attachment mechanisms. We also consider models with a (random) fraction of insertions of adversarial nodes. We give a robust affirmative answer to the above question by showing that for all of these models, as long as many of the units follow simple local heuristics for checking a bounded number of units they depend on, all errors will be eventually eliminated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助材料生采纳,获得10
2秒前
wanci应助飞舞的青鱼采纳,获得10
2秒前
mys发布了新的文献求助10
3秒前
4秒前
CHH发布了新的文献求助30
5秒前
6秒前
CodeCraft应助迪丽热巴采纳,获得30
6秒前
7秒前
7秒前
柔弱的筮完成签到 ,获得积分10
8秒前
8秒前
wanci应助大方的长颈鹿采纳,获得10
8秒前
8秒前
夏寒珊完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
轩辕沛柔发布了新的文献求助10
12秒前
12秒前
沐秋发布了新的文献求助10
13秒前
13秒前
13秒前
hengyuan完成签到,获得积分20
13秒前
阳佟曼云发布了新的文献求助10
13秒前
13秒前
搜集达人应助健忘丹珍采纳,获得10
14秒前
材料生发布了新的文献求助10
14秒前
Aaman发布了新的文献求助30
14秒前
kingfly2010完成签到,获得积分10
14秒前
15秒前
问你有没有发挥完成签到,获得积分10
15秒前
lihongchi发布了新的文献求助10
16秒前
16秒前
CHH完成签到,获得积分10
16秒前
16秒前
16秒前
1234发布了新的文献求助10
17秒前
爆米花应助hengyuan采纳,获得10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253