Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map

三聚体 二聚体 残留物(化学) 蛋白质结构 蛋白质-蛋白质相互作用 蛋白质结构预测 氨基酸残基 化学 生物系统 计算机科学 结晶学 肽序列 生物化学 有机化学 生物 基因
作者
Yanfen Lyu,Ting Xiong,S. Y. Shi,Dong Wang,Xueqing Yang,Quanyang Liu,Zuoqing Li,Zhixin Li,Chunxia Wang,Ruiai Chen
出处
期刊:Nanomaterials [MDPI AG]
卷期号:15 (3): 188-188
标识
DOI:10.3390/nano15030188
摘要

Most life activities of organisms are realized through protein–protein interactions, and these interactions are mainly achieved through residue–residue contact between monomer proteins. Consequently, studying residue–residue contact at the protein interaction interface can contribute to a deeper understanding of the protein–protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor () to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein–protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein–protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue–residue contact at the trimer protein interface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星宿陨发布了新的文献求助10
3秒前
5秒前
杨树发布了新的文献求助10
5秒前
iiiau完成签到,获得积分10
6秒前
晓晓松发布了新的文献求助30
6秒前
6秒前
隐形曼青应助飘逸的山柏采纳,获得10
7秒前
8秒前
范冰冰发布了新的文献求助10
9秒前
10秒前
小鱼儿完成签到,获得积分10
12秒前
自由的风发布了新的文献求助10
12秒前
天天快乐应助康超采纳,获得10
13秒前
14秒前
科研通AI5应助chenting采纳,获得10
14秒前
14秒前
ANdrey发布了新的文献求助10
15秒前
yyy完成签到,获得积分10
17秒前
17秒前
Xiaoxiao应助端庄的白开水采纳,获得10
18秒前
20秒前
牧云发布了新的文献求助10
20秒前
852应助曾经不言采纳,获得10
21秒前
22秒前
乔乔发布了新的文献求助10
23秒前
HB完成签到,获得积分10
23秒前
梅子完成签到 ,获得积分10
23秒前
荣弟完成签到,获得积分10
24秒前
24秒前
可可豆发布了新的文献求助20
24秒前
25秒前
科研通AI5应助ANdrey采纳,获得30
26秒前
jdz546429289完成签到,获得积分20
26秒前
28秒前
jdz546429289发布了新的文献求助10
28秒前
orixero应助陈丫采纳,获得10
29秒前
瘦瘦新烟完成签到,获得积分10
31秒前
汉堡包应助嘟嘟嘟采纳,获得10
31秒前
乔乔完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516009
求助须知:如何正确求助?哪些是违规求助? 3098158
关于积分的说明 9238366
捐赠科研通 2793178
什么是DOI,文献DOI怎么找? 1532872
邀请新用户注册赠送积分活动 712408
科研通“疑难数据库(出版商)”最低求助积分说明 707256