Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map

三聚体 二聚体 残留物(化学) 蛋白质结构 蛋白质-蛋白质相互作用 蛋白质结构预测 氨基酸残基 化学 生物系统 计算机科学 结晶学 肽序列 生物化学 有机化学 生物 基因
作者
Yanfen Lyu,Ting Xiong,S. Y. Shi,Dong Wang,Xueqing Yang,Quanyang Liu,Zuoqing Li,Zhixin Li,Chunxia Wang,Ruiai Chen
出处
期刊:Nanomaterials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 188-188
标识
DOI:10.3390/nano15030188
摘要

Most life activities of organisms are realized through protein–protein interactions, and these interactions are mainly achieved through residue–residue contact between monomer proteins. Consequently, studying residue–residue contact at the protein interaction interface can contribute to a deeper understanding of the protein–protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor () to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein–protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein–protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue–residue contact at the trimer protein interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助111采纳,获得10
1秒前
2秒前
Elige完成签到,获得积分10
2秒前
科研通AI5应助知性的尔曼采纳,获得10
2秒前
募股小完成签到,获得积分10
4秒前
山水之乐发布了新的文献求助10
4秒前
lilac发布了新的文献求助10
5秒前
情怀应助aga采纳,获得10
6秒前
Hui完成签到,获得积分20
7秒前
咸鱼完成签到,获得积分10
8秒前
10秒前
11秒前
lilac完成签到,获得积分10
11秒前
11秒前
halabouqii发布了新的文献求助10
14秒前
14秒前
Master-wang完成签到,获得积分10
15秒前
Hui发布了新的文献求助10
15秒前
小樊同学完成签到,获得积分20
15秒前
炙热乌冬面完成签到 ,获得积分20
15秒前
小h发布了新的文献求助10
15秒前
18秒前
空山完成签到 ,获得积分10
19秒前
吴未发布了新的文献求助10
20秒前
成就书雪完成签到,获得积分10
21秒前
顾矜应助VPN不好用采纳,获得10
23秒前
Hello应助冷酷芷雪采纳,获得10
24秒前
halabouqii完成签到,获得积分10
26秒前
狂野的凝天完成签到,获得积分10
26秒前
27秒前
29秒前
英姑应助小猪采纳,获得10
30秒前
今日不再蛇皇应助小h采纳,获得10
30秒前
Kiling发布了新的文献求助30
31秒前
外向的飞机完成签到,获得积分20
31秒前
Ann完成签到,获得积分10
33秒前
ww完成签到,获得积分10
33秒前
沈迎松发布了新的文献求助10
33秒前
无限的三问完成签到 ,获得积分10
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774441
求助须知:如何正确求助?哪些是违规求助? 3320149
关于积分的说明 10198641
捐赠科研通 3034758
什么是DOI,文献DOI怎么找? 1665178
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757549