Research on the Application of Improved BERT‐DPCNN Model in Chinese News Text Classification

计算机科学 万维网
作者
H WANG,Shuyan Zhang
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
被引量:1
标识
DOI:10.1002/cpe.8338
摘要

ABSTRACT This paper introduces an enhanced BERT‐DPCNN model for the task of Chinese news text classification. The model addresses the common challenge of balancing accuracy and computational efficiency in existing models, especially when dealing with large‐scale, high‐dimensional text data. To tackle this issue, the paper proposes an improved BERT‐DPCNN model that integrates BERT's pre‐trained language model with DPCNN's efficient convolutional structure to capture deep semantic information and key features from the text. Additionally, the paper incorporates the zebra optimization algorithm (ZOA) to dynamically optimize the model's hyperparameters, overcoming the limitations of manual tuning in traditional models. By automatically optimizing hyperparameters such as batch size, learning rate, and the number of filters through ZOA, the model's classification performance is significantly enhanced. Experimental results demonstrate that the improved ZOA‐BERT‐DPCNN model outperforms traditional methods on the THUCNEWS Chinese news dataset, not only verifying its effectiveness in news text classification tasks but also showcasing its potential to enhance classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助likexin采纳,获得10
刚刚
阿巴阿巴完成签到,获得积分20
1秒前
香蕉觅云应助白凌风采纳,获得10
2秒前
欢呼一斩发布了新的文献求助10
2秒前
栗子发布了新的文献求助10
2秒前
3秒前
镓氧锌钇铀应助元谷雪采纳,获得10
3秒前
3秒前
天天快乐应助NathanChen采纳,获得10
4秒前
可爱的函函应助keyanqianjin采纳,获得10
4秒前
自己哭哭发布了新的文献求助10
4秒前
赘婿应助keke采纳,获得10
4秒前
善良的怜晴完成签到 ,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
ccm应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
阿巴阿巴发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
mashibeo应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
mashibeo应助科研通管家采纳,获得10
6秒前
liao应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
mashibeo应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458264
求助须知:如何正确求助?哪些是违规求助? 4564362
关于积分的说明 14294784
捐赠科研通 4489268
什么是DOI,文献DOI怎么找? 2458946
邀请新用户注册赠送积分活动 1448790
关于科研通互助平台的介绍 1424442