A universal reverse‐cool annealing strategy makes two‐dimensional Ruddlesden‐popper perovskite solar cells stable and highly efficient with Voc exceeding 1.2 V

退火(玻璃) 钙钛矿(结构) 材料科学 凝聚态物理 物理 结晶学 化学 复合材料
作者
Zhongqi Xie,Huiming Luo,Qingsong Jiang,Ya Zhao,Yong Peng,Ligang Yuan,Keyou Yan,Mojtaba Abdi‐Jalebi
出处
期刊:EcoMat [Wiley]
标识
DOI:10.1002/eom2.12501
摘要

Abstract Two‐dimensional Ruddlesden‐Popper (2D RP) layered metal‐halide perovskites have garnered increasing attention due to their favorable optoelectronic properties and enhanced stability in comparison to their three‐dimensional counterparts. Nevertheless, precise control over the crystal orientation of 2D RP perovskite films remains challenging, primarily due to the intricacies associated with the solvent evaporation process. In this study, we introduce a novel approach known as reverse‐cool annealing (RCA) for the fabrication of 2D RP perovskite films. This method involves a sequential annealing process at high and low temperatures for wet perovskite films. The resulting RCA‐based perovskite films show the smallest root‐mean‐square value of 23.1 nm, indicating a minimal surface roughness and a notably compact and smooth surface morphology. The low defect density in these 2D RP perovskite films with exceptional crystallinity suppresses non‐radiative recombination, leading to a minimal non‐radiative open‐circuit voltage loss of 149 mV. Moreover, the average charge lifetime in these films is extended to 56.3 ns, thanks to their preferential growth along the out‐of‐plane direction. Consequently, the leading 2D RP perovskite solar cell achieves an impressive power conversion efficiency of 17.8% and an open‐circuit voltage of 1.21 V. Additionally, the stability of the 2D RP perovskite solar cell, even without encapsulation, exhibits substantial improvement, retaining 97.4% of its initial efficiency after 1000 hours under a nitrogen environment. The RCA strategy presents a promising avenue for advancing the commercial prospects of 2D RP perovskite solar cells. image
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玻璃弹珠发布了新的文献求助10
刚刚
1秒前
以乐其志发布了新的文献求助10
2秒前
朴素摩托完成签到,获得积分10
2秒前
共享精神应助我不是丑橘采纳,获得30
3秒前
3秒前
小蘑菇应助呆瓜采纳,获得150
4秒前
4秒前
5秒前
小草莓发布了新的文献求助10
5秒前
6秒前
xxxhhh发布了新的文献求助10
7秒前
玻璃弹珠完成签到,获得积分10
7秒前
知不道发布了新的文献求助10
8秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
JJJ发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
在水一方应助大观天下采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
13秒前
14秒前
14秒前
科研通AI2S应助Dicy采纳,获得10
14秒前
BETCHA完成签到,获得积分10
14秒前
14秒前
补喵发布了新的文献求助10
15秒前
星辰大海应助叮叮叮采纳,获得10
15秒前
Jerry发布了新的文献求助30
15秒前
LEOhard完成签到,获得积分10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570