Ab Initio Predictions of Adsorption in Flexible Metal–Organic Frameworks for Water Harvesting Applications

化学 从头算 吸附 金属有机骨架 从头算量子化学方法 计算化学 纳米技术 化学物理 分子 物理化学 有机化学 材料科学
作者
Ruben Goeminne,Véronique Van Speybroeck
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c15287
摘要

Metal–organic frameworks such as MOF-303 and MOF-LA2–1 have demonstrated exceptional performance for water harvesting applications. To enable a reticular design of such materials, an accurate prediction of the adsorption properties with chemical accuracy and fully accounting for the flexibility is crucial. The computational prediction of water adsorption properties in MOFs has become standard practice, but current methods lack the predictive power needed to design new materials. Limitations stem from the way the interatomic potential is described and the inadequate consideration of the framework flexibility. Herein, we showcase a methodology to obtain chemically accurate adsorption isotherms that fully account for framework flexibility. The method relies on very accurate and efficiently trained machine learning potentials and transition matrix Monte Carlo simulations to account for framework flexibility. For MOF-303, quantitatively accurate adsorption isotherms are obtained, provided an accurately benchmarked electronic structure method is used to train the machine learning potential, and local and global framework flexibility is accounted for. The broader applicability is shown through the study of MOF-333 and MOF-LA2–1. Analysis of the water density profiles in the MOFs gives insight into the factors governing the shape and origin of the isotherm. An optimal water harvester should have initial seeding sites with intermediate adsorption strength to prevent detrimental low-pressure water uptake. To increase the working capacity, linker extension strategies can be used while maintaining the initial seeding sites, as was done in MOF-LA2–1. The methodology can be applied to other guest molecules and MOFs, enabling the future design of MOFs with specific adsorption properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmnzmnzmn发布了新的文献求助10
刚刚
Akim应助oy采纳,获得10
2秒前
Mipaa完成签到,获得积分10
3秒前
科研通AI2S应助汪汪采纳,获得10
3秒前
苑小苑完成签到,获得积分10
3秒前
4秒前
4秒前
tongtong关注了科研通微信公众号
4秒前
juju完成签到,获得积分10
5秒前
5秒前
jimmy完成签到,获得积分10
5秒前
七七完成签到 ,获得积分10
6秒前
cfplhys完成签到,获得积分10
8秒前
还单身的语琴完成签到,获得积分10
9秒前
zdy发布了新的文献求助10
9秒前
阳光梦易完成签到 ,获得积分10
10秒前
10秒前
神羊发布了新的文献求助10
10秒前
科研通AI5应助微笑亿先采纳,获得10
10秒前
嘉心糖发布了新的文献求助200
10秒前
不安的未来完成签到,获得积分10
11秒前
ywd完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
科研通AI5应助hetaopier采纳,获得10
13秒前
13秒前
隐形曼青应助研友_菲采纳,获得10
14秒前
充电宝应助皓轩采纳,获得10
15秒前
16秒前
hhuajw完成签到,获得积分10
16秒前
17秒前
17秒前
nojivv完成签到,获得积分10
17秒前
juju发布了新的文献求助10
18秒前
anna1992发布了新的文献求助10
19秒前
huohuo143完成签到,获得积分10
19秒前
伯赏浩天完成签到,获得积分10
20秒前
爆米花应助zdy采纳,获得10
20秒前
Lucas应助知性的采珊采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835