Real-time detection of powder bed defects in laser powder bed fusion using deep learning on 3D point clouds

融合 材料科学 点云 人工智能 计算机科学 语言学 哲学
作者
Junlai Zhao,Zihan Yang,Qingpeng Chen,Chen Zhang,Jianhui Zhao,Guoqing Zhang,Fang Dong,Sheng Liu
出处
期刊:Virtual and Physical Prototyping [Informa]
卷期号:20 (1)
标识
DOI:10.1080/17452759.2024.2449171
摘要

Powder bed defects are critical factors affecting the print quality and stability in Laser Powder Bed Fusion (LPBF). However, traditional 2D image-based powder bed defect monitoring methods are limited by sensitivity to lighting conditions and insufficient data capture. This study proposes a real-time defect monitoring system based on 3D point cloud data and deep learning approach. The system uses binocular vision to capture point cloud data in real time, enabling high-precision defect segmentation with advanced deep learning models. However, direct deep learning on point clouds can result in the loss of small defect features during downsampling. To address this, an indirect point cloud deep learning method based on 2D projection is introduced, which improves segmentation accuracy for small defects while reducing inference time. By deploying the trained model, this study establishes a closed-loop control system for powder bed defect detection and conducts real-world printing tests, demonstrating effective defect remediation capabilities. Although larger-scale industrial testing is still required, this research illustrates the significant potential of 3D point cloud-based deep learning in enhancing defect detection and quality control in additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
believe完成签到,获得积分10
3秒前
jjkku完成签到,获得积分10
4秒前
7秒前
刘不言完成签到,获得积分10
11秒前
苏格拉胯发布了新的文献求助10
11秒前
知性的友易完成签到,获得积分10
11秒前
小鳄鱼一只完成签到,获得积分10
12秒前
小马甲应助lin采纳,获得10
14秒前
16秒前
不想说完成签到,获得积分10
16秒前
18秒前
20秒前
júpiter完成签到,获得积分10
20秒前
土豆你个西红柿完成签到 ,获得积分10
20秒前
Kyone完成签到,获得积分10
21秒前
木穹完成签到,获得积分10
22秒前
善学以致用应助louise采纳,获得10
23秒前
23秒前
花花发布了新的文献求助10
24秒前
bing发布了新的文献求助30
25秒前
ERICLEE82发布了新的文献求助10
25秒前
蜂蜜芥末小熊完成签到,获得积分10
26秒前
27秒前
Tom完成签到 ,获得积分10
28秒前
woyaocifan发布了新的文献求助10
29秒前
30秒前
30秒前
俊逸夜阑发布了新的文献求助10
32秒前
生活的狗完成签到,获得积分10
33秒前
红黄蓝完成签到 ,获得积分10
34秒前
ERICLEE82完成签到,获得积分10
34秒前
34秒前
骆驼牛子发布了新的文献求助30
35秒前
明亮的初阳应助苏格拉胯采纳,获得10
35秒前
100完成签到,获得积分10
36秒前
行者无疆发布了新的文献求助10
36秒前
星辰大海应助123456采纳,获得10
37秒前
38秒前
逸灵素完成签到 ,获得积分10
40秒前
文文文完成签到,获得积分10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540614
求助须知:如何正确求助?哪些是违规求助? 3117897
关于积分的说明 9333158
捐赠科研通 2815765
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721158
科研通“疑难数据库(出版商)”最低求助积分说明 712515