Uncertainty-Guided Discriminative Priors Mining for Flexible Unsupervised Spectral Reconstruction

判别式 先验概率 人工智能 计算机科学 模式识别(心理学) 机器学习 贝叶斯概率
作者
Yihong Leng,Jiaojiao Li,Rui Song,Yunsong Li,Qian Du
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2025.3526159
摘要

Existing supervised spectral reconstruction (SR) methods adopt paired RGB images and hyperspectral images (HSIs) to drive the overall paradigms. Nonetheless, in practice", paired" requires higher device requirements such as specific well-calibrated dual cameras or more complex and exact registration processes among images with different time phases, widths, and spatial resolution. To tackle the above challenges, we propose a flexible uncertainty-aware unsupervised SR paradigm, which dynamically establishes the forceful and potent constraints with RGBs for driving unsupervised learning. As a specific plug-and-play tail in our paradigm, the uncertainty-aware saliency alignment module (USAM) calculates pixel-and spectralwise information entropy for uncertainty estimation, which attempts to represent the corresponding reflectivity or radiance to the light among different objects in various scenes, forcing the paradigm to adaptively explore the scene-agnostic prominent features. Furthermore, a progressively parallel network under our unsupervised paradigm is conducted to excavate discriminate structural and semantic priors of RGBs to assist in recovering dependable HSIs: 1) a learnable rank-guided structural representation (LRSR) flow is leveraged to characterize the latent structural priors via excavating nonzero elements in the full-rank matrix and further preserve evident boundaries in HSIs; and 2) a coarse-to-fine bandwise semantic perception (CBSP) flow is conducted to propagate perceptual bandwise affinity for aggregating and strengthening intrinsic interband dependencies, and further extract delicate semantic priors, which can recover plentiful contiguous spectral information in HSIs. Comprehensive quantitative and qualitative experimental results on three visual and two remote sensing benchmarks have shown the superiority and robustness of our method. We also conducted nine existing SR methods in our unsupervised paradigm to recover HSIs without any manual intervention, which proves the generality of our paradigm to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward完成签到,获得积分10
刚刚
有有完成签到 ,获得积分0
1秒前
摆哥完成签到,获得积分10
1秒前
沉静的煎蛋完成签到 ,获得积分10
1秒前
2秒前
NexusExplorer应助北遇采纳,获得10
2秒前
堪雅寒发布了新的文献求助10
3秒前
Xixi_yuan完成签到,获得积分10
4秒前
时2完成签到,获得积分10
4秒前
LJJ完成签到 ,获得积分10
4秒前
背后的白山完成签到,获得积分10
4秒前
5秒前
濠哥妈咪完成签到,获得积分10
5秒前
超级小飞侠完成签到 ,获得积分10
5秒前
小蜗牛完成签到,获得积分10
6秒前
6秒前
muzi发布了新的文献求助10
7秒前
大白不白完成签到,获得积分10
7秒前
灵巧的蝴蝶完成签到,获得积分10
8秒前
程大大大教授完成签到,获得积分10
8秒前
积极的忆曼完成签到,获得积分10
9秒前
9秒前
水瓶鱼完成签到,获得积分0
9秒前
光亮青柏完成签到 ,获得积分10
9秒前
10秒前
轻狂书生完成签到,获得积分10
11秒前
Darren发布了新的文献求助10
12秒前
Dore发布了新的文献求助10
12秒前
fy完成签到,获得积分10
13秒前
qqqqgc发布了新的文献求助10
14秒前
阿里山完成签到,获得积分10
14秒前
cdercder应助zx采纳,获得10
14秒前
应樱完成签到 ,获得积分10
15秒前
chaoschen完成签到,获得积分10
16秒前
jing完成签到,获得积分10
17秒前
hhh完成签到,获得积分10
17秒前
大气的雁桃完成签到,获得积分10
18秒前
瘦瘦的寒珊完成签到 ,获得积分10
18秒前
jameslee04完成签到 ,获得积分10
18秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742453
求助须知:如何正确求助?哪些是违规求助? 3284964
关于积分的说明 10042546
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784234
科研通“疑难数据库(出版商)”最低求助积分说明 750676