Named entity recognition method based on boundary-aware attention mechanism and generative adversarial network

对抗制 计算机科学 生成语法 机制(生物学) 生成对抗网络 人工智能 边界(拓扑) 自然语言处理 深度学习 数学 数学分析 哲学 认识论
作者
Pengfei Huang,Chen Qiu
标识
DOI:10.1117/12.3044951
摘要

Named Entity Recognition (NER) aims to locate and identify entities with specific meaning in text. The NER problem can usually be regarded as a type of sequence labeling problem. The key to solving this type of problem lies in determining the boundaries and categories of entities. However, due to the fuzziness of entity boundaries and limitations at the labeling level, most existing NER models introduce vocabulary information loss and The problem of entity boundary recognition error. To this end, a named entity recognition method based on the boundary-aware attention mechanism is proposed. By introducing pointer annotation to construct the boundary position vector, a sequence annotation layer that fuses the boundary position information is established to fully exploit the boundary characteristics of the entity. On the basis of integrating the boundary position vector, the lattice structure of the text information is converted into a planar structure composed of spans, a dynamic position encoding strategy is designed based on pointer annotation, and then the semantics of the label of the entity annotation and the entity boundary position are learned based on the generative adversarial network Similarity, and improve entity recognition performance by introducing information of entity boundary pointers in the weight calculation of the attention mechanism. Experimental results on weibo and Chinese-Literature-NER data sets show that the proposed method has obvious advantages in accuracy and F1 index compared with the baseline method, verifying the effectiveness of the attention mechanism based on boundary awareness in named entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
刚刚
土豪的如萱完成签到 ,获得积分20
刚刚
研究生end应助科研通管家采纳,获得50
刚刚
Orange应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
idiot发布了新的文献求助10
1秒前
杜安发布了新的文献求助10
1秒前
双桅船完成签到,获得积分10
1秒前
文艺谷蓝发布了新的文献求助10
1秒前
啊啊啊啊啊啊完成签到,获得积分20
2秒前
julian190完成签到,获得积分10
2秒前
浮游应助Sophist采纳,获得10
2秒前
3秒前
4秒前
等不及完成签到,获得积分10
4秒前
5秒前
Tina完成签到,获得积分10
5秒前
科研通AI6应助纳兰嫣然采纳,获得10
6秒前
yiheng发布了新的文献求助10
7秒前
7秒前
JIA发布了新的文献求助10
7秒前
浮游应助harmy采纳,获得10
8秒前
传奇3应助aaaiii采纳,获得10
8秒前
lllllnnnnj完成签到,获得积分10
9秒前
9秒前
程笑笑完成签到,获得积分10
10秒前
10秒前
10秒前
平平平平完成签到 ,获得积分10
11秒前
流光发布了新的文献求助10
11秒前
鸭梨发布了新的文献求助10
11秒前
12秒前
13秒前
科研通AI6应助陈雯采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393