Named entity recognition method based on boundary-aware attention mechanism and generative adversarial network

对抗制 计算机科学 生成语法 机制(生物学) 生成对抗网络 人工智能 边界(拓扑) 自然语言处理 深度学习 数学 认识论 数学分析 哲学
作者
Pengfei Huang,Chen Qiu
标识
DOI:10.1117/12.3044951
摘要

Named Entity Recognition (NER) aims to locate and identify entities with specific meaning in text. The NER problem can usually be regarded as a type of sequence labeling problem. The key to solving this type of problem lies in determining the boundaries and categories of entities. However, due to the fuzziness of entity boundaries and limitations at the labeling level, most existing NER models introduce vocabulary information loss and The problem of entity boundary recognition error. To this end, a named entity recognition method based on the boundary-aware attention mechanism is proposed. By introducing pointer annotation to construct the boundary position vector, a sequence annotation layer that fuses the boundary position information is established to fully exploit the boundary characteristics of the entity. On the basis of integrating the boundary position vector, the lattice structure of the text information is converted into a planar structure composed of spans, a dynamic position encoding strategy is designed based on pointer annotation, and then the semantics of the label of the entity annotation and the entity boundary position are learned based on the generative adversarial network Similarity, and improve entity recognition performance by introducing information of entity boundary pointers in the weight calculation of the attention mechanism. Experimental results on weibo and Chinese-Literature-NER data sets show that the proposed method has obvious advantages in accuracy and F1 index compared with the baseline method, verifying the effectiveness of the attention mechanism based on boundary awareness in named entity recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
55555555完成签到,获得积分10
刚刚
垃圾智造者完成签到,获得积分10
刚刚
走啊走啊走完成签到,获得积分10
1秒前
黄科研完成签到,获得积分10
1秒前
顾矜应助王某人采纳,获得10
1秒前
岩伴完成签到,获得积分10
1秒前
小强x完成签到,获得积分10
1秒前
_hhhjhhh完成签到,获得积分10
2秒前
Laura完成签到 ,获得积分10
2秒前
科研通AI6应助WenyHe采纳,获得10
2秒前
马明旋完成签到,获得积分10
2秒前
司空天磊完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
tangyuan发布了新的文献求助10
4秒前
wanna完成签到,获得积分10
4秒前
青阳完成签到,获得积分10
4秒前
儒雅的巧曼完成签到,获得积分10
4秒前
斯文败类应助紫菜采纳,获得10
5秒前
殷勤的问玉完成签到,获得积分10
5秒前
5秒前
科目三应助雪山飞龙采纳,获得30
6秒前
昵称完成签到,获得积分10
6秒前
391X小king发布了新的文献求助10
6秒前
文静谷秋完成签到,获得积分10
6秒前
6秒前
罗斯ROSE完成签到 ,获得积分10
6秒前
AAA建材王哥完成签到,获得积分10
6秒前
田様应助zhang采纳,获得10
7秒前
英勇凝旋完成签到,获得积分10
7秒前
彩色的过客完成签到,获得积分10
7秒前
永不言弃完成签到,获得积分0
7秒前
大力的洪纲完成签到,获得积分10
7秒前
7秒前
slm完成签到,获得积分10
7秒前
武科大完成签到,获得积分10
8秒前
zgrmws应助Hi采纳,获得20
8秒前
SS完成签到,获得积分10
8秒前
丘比特应助蓦回采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508