Named entity recognition method based on boundary-aware attention mechanism and generative adversarial network

对抗制 计算机科学 生成语法 机制(生物学) 生成对抗网络 人工智能 边界(拓扑) 自然语言处理 深度学习 数学 数学分析 哲学 认识论
作者
Pengfei Huang,Chen Qiu
标识
DOI:10.1117/12.3044951
摘要

Named Entity Recognition (NER) aims to locate and identify entities with specific meaning in text. The NER problem can usually be regarded as a type of sequence labeling problem. The key to solving this type of problem lies in determining the boundaries and categories of entities. However, due to the fuzziness of entity boundaries and limitations at the labeling level, most existing NER models introduce vocabulary information loss and The problem of entity boundary recognition error. To this end, a named entity recognition method based on the boundary-aware attention mechanism is proposed. By introducing pointer annotation to construct the boundary position vector, a sequence annotation layer that fuses the boundary position information is established to fully exploit the boundary characteristics of the entity. On the basis of integrating the boundary position vector, the lattice structure of the text information is converted into a planar structure composed of spans, a dynamic position encoding strategy is designed based on pointer annotation, and then the semantics of the label of the entity annotation and the entity boundary position are learned based on the generative adversarial network Similarity, and improve entity recognition performance by introducing information of entity boundary pointers in the weight calculation of the attention mechanism. Experimental results on weibo and Chinese-Literature-NER data sets show that the proposed method has obvious advantages in accuracy and F1 index compared with the baseline method, verifying the effectiveness of the attention mechanism based on boundary awareness in named entity recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nao1314关注了科研通微信公众号
刚刚
1秒前
kingwill应助Novtle12采纳,获得10
2秒前
4秒前
盷昀发布了新的文献求助10
5秒前
春国应助舒洛采纳,获得10
7秒前
showner完成签到,获得积分10
7秒前
9秒前
9秒前
10秒前
卡卡应助岳霖风采纳,获得30
11秒前
打打应助orange9采纳,获得10
12秒前
13秒前
科研通AI2S应助Nancy采纳,获得10
13秒前
盷昀完成签到,获得积分10
15秒前
在意i完成签到,获得积分10
15秒前
空白完成签到,获得积分10
16秒前
17秒前
19秒前
脑洞疼应助王宇杰采纳,获得10
20秒前
Song发布了新的文献求助10
21秒前
22秒前
Jasper应助二傻不刮痧采纳,获得10
22秒前
orange9发布了新的文献求助10
22秒前
24秒前
卡卡应助岳霖风采纳,获得30
24秒前
子车茗应助未来可以采纳,获得30
25秒前
852应助祖安诳人采纳,获得10
27秒前
领导范儿应助20001019采纳,获得10
28秒前
29秒前
yongon发布了新的文献求助10
30秒前
浙江嘉兴完成签到,获得积分10
30秒前
30秒前
FY完成签到,获得积分10
32秒前
劲秉应助时尚的水香采纳,获得10
33秒前
34秒前
张张完成签到,获得积分20
34秒前
36秒前
Sylvia完成签到,获得积分10
37秒前
有魅力荟发布了新的文献求助10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356273
求助须知:如何正确求助?哪些是违规求助? 2979823
关于积分的说明 8692252
捐赠科研通 2661384
什么是DOI,文献DOI怎么找? 1457177
科研通“疑难数据库(出版商)”最低求助积分说明 674714
邀请新用户注册赠送积分活动 665533