Named entity recognition method based on boundary-aware attention mechanism and generative adversarial network

对抗制 计算机科学 生成语法 机制(生物学) 生成对抗网络 人工智能 边界(拓扑) 自然语言处理 深度学习 数学 认识论 数学分析 哲学
作者
Pengfei Huang,Chen Qiu
标识
DOI:10.1117/12.3044951
摘要

Named Entity Recognition (NER) aims to locate and identify entities with specific meaning in text. The NER problem can usually be regarded as a type of sequence labeling problem. The key to solving this type of problem lies in determining the boundaries and categories of entities. However, due to the fuzziness of entity boundaries and limitations at the labeling level, most existing NER models introduce vocabulary information loss and The problem of entity boundary recognition error. To this end, a named entity recognition method based on the boundary-aware attention mechanism is proposed. By introducing pointer annotation to construct the boundary position vector, a sequence annotation layer that fuses the boundary position information is established to fully exploit the boundary characteristics of the entity. On the basis of integrating the boundary position vector, the lattice structure of the text information is converted into a planar structure composed of spans, a dynamic position encoding strategy is designed based on pointer annotation, and then the semantics of the label of the entity annotation and the entity boundary position are learned based on the generative adversarial network Similarity, and improve entity recognition performance by introducing information of entity boundary pointers in the weight calculation of the attention mechanism. Experimental results on weibo and Chinese-Literature-NER data sets show that the proposed method has obvious advantages in accuracy and F1 index compared with the baseline method, verifying the effectiveness of the attention mechanism based on boundary awareness in named entity recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梧桐发布了新的文献求助10
3秒前
3秒前
3秒前
kiki发布了新的文献求助10
5秒前
manggggo应助博修采纳,获得10
7秒前
霍冰旋完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
JamesPei应助荔刻UTD采纳,获得10
10秒前
善学以致用应助霍冰旋采纳,获得10
14秒前
17秒前
飘逸的凝荷完成签到,获得积分10
18秒前
酷波er应助SinaiPen采纳,获得10
20秒前
20秒前
hqq发布了新的文献求助30
21秒前
无花果应助hyfwkd采纳,获得10
22秒前
22秒前
22秒前
荔刻UTD发布了新的文献求助10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
热木发布了新的文献求助10
26秒前
28秒前
Wakey发布了新的文献求助10
29秒前
忧虑的冷霜完成签到,获得积分10
30秒前
31秒前
32秒前
Rita完成签到,获得积分10
32秒前
眼睛大雨筠应助欠虐宝宝采纳,获得30
33秒前
烟花应助阔达苡采纳,获得10
33秒前
hqq发布了新的文献求助30
35秒前
完美世界应助伶俐绿柏采纳,获得10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150