Named entity recognition method based on boundary-aware attention mechanism and generative adversarial network

对抗制 计算机科学 生成语法 机制(生物学) 生成对抗网络 人工智能 边界(拓扑) 自然语言处理 深度学习 数学 认识论 数学分析 哲学
作者
Pengfei Huang,Chen Qiu
标识
DOI:10.1117/12.3044951
摘要

Named Entity Recognition (NER) aims to locate and identify entities with specific meaning in text. The NER problem can usually be regarded as a type of sequence labeling problem. The key to solving this type of problem lies in determining the boundaries and categories of entities. However, due to the fuzziness of entity boundaries and limitations at the labeling level, most existing NER models introduce vocabulary information loss and The problem of entity boundary recognition error. To this end, a named entity recognition method based on the boundary-aware attention mechanism is proposed. By introducing pointer annotation to construct the boundary position vector, a sequence annotation layer that fuses the boundary position information is established to fully exploit the boundary characteristics of the entity. On the basis of integrating the boundary position vector, the lattice structure of the text information is converted into a planar structure composed of spans, a dynamic position encoding strategy is designed based on pointer annotation, and then the semantics of the label of the entity annotation and the entity boundary position are learned based on the generative adversarial network Similarity, and improve entity recognition performance by introducing information of entity boundary pointers in the weight calculation of the attention mechanism. Experimental results on weibo and Chinese-Literature-NER data sets show that the proposed method has obvious advantages in accuracy and F1 index compared with the baseline method, verifying the effectiveness of the attention mechanism based on boundary awareness in named entity recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助自由寻冬采纳,获得10
刚刚
TARS发布了新的文献求助10
1秒前
2秒前
2秒前
苹果亦巧发布了新的文献求助30
2秒前
hai关闭了hai文献求助
3秒前
黎建东完成签到,获得积分10
3秒前
3秒前
无辜的蜗牛完成签到 ,获得积分10
3秒前
Aimeee完成签到,获得积分10
4秒前
TAT完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
SciGPT应助王碱采纳,获得10
6秒前
6秒前
吴彦祖完成签到,获得积分10
6秒前
7秒前
mayun95完成签到,获得积分10
8秒前
star完成签到,获得积分20
8秒前
10秒前
10秒前
寒冷猫咪完成签到,获得积分20
10秒前
TARS发布了新的文献求助10
11秒前
12秒前
科研通AI6应助Maxw采纳,获得10
12秒前
12秒前
12秒前
Genius完成签到,获得积分10
12秒前
jj发布了新的文献求助10
14秒前
啦11发布了新的文献求助20
14秒前
15秒前
mayun95发布了新的文献求助10
15秒前
15秒前
16秒前
opair应助多愁善感的鱼采纳,获得10
16秒前
王碱发布了新的文献求助10
16秒前
王一完成签到,获得积分20
17秒前
17秒前
寒冷猫咪发布了新的文献求助10
17秒前
17秒前
大模型应助4qfguj采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497