Causality-driven candidate identification for reliable DNA methylation biomarker discovery

生物标志物发现 计算生物学 DNA甲基化 鉴定(生物学) 生物标志物 因果关系(物理学) 生物 遗传学 计算机科学 生物信息学 基因 蛋白质组学 基因表达 植物 物理 量子力学
作者
Xinlu Tang,Rui Guo,Zhanfeng Mo,Wenli Fu,Xiaohua Qian
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56054-y
摘要

Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease. It integrates causal thinking, deep learning, and biological priors to handle non-causal confounding factors, through a contrastive scheme and a spatial-relation regularization that reduces interferences from individual characteristics and noises, respectively. The comprehensive reliability of the proposed method was verified by simulations and applications involving various human diseases, sample origins, and sequencing technologies, highlighting its universal biomedical significance. Overall, this study offers a causal-deep-learning-based perspective with a compatible tool to identify reliable DNAm biomarker candidates, promoting resource-efficient biomarker discovery. DNA methylation is a promising method to identify biomarkers, but defining causality can be challenging. Here, the authors propose a causality driven regularization framework to reduce noise and identify potential causative factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
比耶完成签到 ,获得积分10
刚刚
刚刚
俏皮的世界完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
烟花应助柏听寒采纳,获得10
2秒前
点滴电镀完成签到,获得积分10
3秒前
sxm完成签到,获得积分10
3秒前
李健应助Ivan采纳,获得10
4秒前
runtang发布了新的文献求助10
4秒前
gg完成签到,获得积分10
4秒前
fighting完成签到,获得积分10
4秒前
柠_完成签到,获得积分10
4秒前
hhh发布了新的文献求助10
6秒前
小马甲应助bjyx采纳,获得30
7秒前
7秒前
9秒前
疯狂吃辣完成签到,获得积分10
9秒前
好单纯发布了新的文献求助10
10秒前
10秒前
生动的问旋完成签到,获得积分10
10秒前
10秒前
12秒前
不吃橘子发布了新的文献求助10
12秒前
13秒前
jianwu完成签到,获得积分10
13秒前
脑洞疼应助seven采纳,获得10
13秒前
14秒前
霜月十四完成签到,获得积分10
14秒前
瞬华发布了新的文献求助10
15秒前
15秒前
hyy发布了新的文献求助10
16秒前
16秒前
17秒前
希望天下0贩的0应助Ansels采纳,获得10
18秒前
刘旭阳发布了新的文献求助10
18秒前
sxm发布了新的文献求助30
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助50
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577717
求助须知:如何正确求助?哪些是违规求助? 3996873
关于积分的说明 12373702
捐赠科研通 3670822
什么是DOI,文献DOI怎么找? 2023094
邀请新用户注册赠送积分活动 1057164
科研通“疑难数据库(出版商)”最低求助积分说明 944121