Causality-driven candidate identification for reliable DNA methylation biomarker discovery

生物标志物发现 计算生物学 DNA甲基化 鉴定(生物学) 生物标志物 因果关系(物理学) 生物 遗传学 计算机科学 生物信息学 基因 蛋白质组学 基因表达 植物 量子力学 物理
作者
Xinlu Tang,Rui Guo,Zhanfeng Mo,Wenli Fu,Xiaohua Qian
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56054-y
摘要

Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease. It integrates causal thinking, deep learning, and biological priors to handle non-causal confounding factors, through a contrastive scheme and a spatial-relation regularization that reduces interferences from individual characteristics and noises, respectively. The comprehensive reliability of the proposed method was verified by simulations and applications involving various human diseases, sample origins, and sequencing technologies, highlighting its universal biomedical significance. Overall, this study offers a causal-deep-learning-based perspective with a compatible tool to identify reliable DNAm biomarker candidates, promoting resource-efficient biomarker discovery. DNA methylation is a promising method to identify biomarkers, but defining causality can be challenging. Here, the authors propose a causality driven regularization framework to reduce noise and identify potential causative factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助ZJF采纳,获得20
1秒前
优雅飞槐发布了新的文献求助10
2秒前
Lucas应助手提袋子的猫采纳,获得10
3秒前
3秒前
3秒前
4秒前
程11关注了科研通微信公众号
4秒前
Angie发布了新的文献求助10
5秒前
朝阳区李知恩应助冷艳莛采纳,获得10
6秒前
研友_8WdzPL完成签到,获得积分10
6秒前
7秒前
7秒前
1111发布了新的文献求助10
8秒前
9秒前
dd完成签到,获得积分10
9秒前
更加好给更加好的求助进行了留言
10秒前
bob发布了新的文献求助30
11秒前
英姑应助研友_8WdzPL采纳,获得10
11秒前
量子星尘发布了新的文献求助150
12秒前
12秒前
今后应助怕黑的跳跳糖采纳,获得100
13秒前
13秒前
Aurora发布了新的文献求助10
14秒前
优雅飞槐完成签到,获得积分10
15秒前
1111完成签到,获得积分20
15秒前
打打应助Li采纳,获得10
15秒前
15秒前
子新完成签到,获得积分20
16秒前
FashionBoy应助张晟辉采纳,获得30
17秒前
17秒前
1111完成签到,获得积分20
17秒前
完美世界应助烂漫雪曼采纳,获得10
18秒前
冷艳莛完成签到,获得积分10
18秒前
20秒前
ffw1发布了新的文献求助10
21秒前
22秒前
Jasper应助聂白晴采纳,获得10
22秒前
wdddr发布了新的文献求助10
23秒前
研友_8WdzPL发布了新的文献求助10
23秒前
qql完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142593
求助须知:如何正确求助?哪些是违规求助? 4340821
关于积分的说明 13518386
捐赠科研通 4180828
什么是DOI,文献DOI怎么找? 2292600
邀请新用户注册赠送积分活动 1293261
关于科研通互助平台的介绍 1235765