Causality-driven candidate identification for reliable DNA methylation biomarker discovery

生物标志物发现 计算生物学 DNA甲基化 鉴定(生物学) 生物标志物 因果关系(物理学) 生物 遗传学 计算机科学 生物信息学 基因 蛋白质组学 基因表达 植物 物理 量子力学
作者
Xinlu Tang,Rui Guo,Zhanfeng Mo,Wenli Fu,Xiaohua Qian
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-56054-y
摘要

Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease. It integrates causal thinking, deep learning, and biological priors to handle non-causal confounding factors, through a contrastive scheme and a spatial-relation regularization that reduces interferences from individual characteristics and noises, respectively. The comprehensive reliability of the proposed method was verified by simulations and applications involving various human diseases, sample origins, and sequencing technologies, highlighting its universal biomedical significance. Overall, this study offers a causal-deep-learning-based perspective with a compatible tool to identify reliable DNAm biomarker candidates, promoting resource-efficient biomarker discovery. DNA methylation is a promising method to identify biomarkers, but defining causality can be challenging. Here, the authors propose a causality driven regularization framework to reduce noise and identify potential causative factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
youxiupan完成签到,获得积分10
1秒前
研友_alzhgo完成签到,获得积分10
3秒前
bangbangsh发布了新的文献求助20
6秒前
calvin完成签到 ,获得积分10
7秒前
9秒前
9秒前
海之声完成签到,获得积分10
12秒前
老丫大侠完成签到 ,获得积分10
12秒前
14秒前
15秒前
zeng完成签到,获得积分10
15秒前
崔win发布了新的文献求助10
15秒前
你的样子完成签到,获得积分10
16秒前
16秒前
16秒前
GRJ发布了新的文献求助10
17秒前
现代曼香发布了新的文献求助10
18秒前
温纲完成签到,获得积分10
18秒前
19秒前
科研通AI5应助莎莎来了采纳,获得20
19秒前
所所应助迷路的小牛马采纳,获得10
19秒前
您的慈父发布了新的文献求助10
20秒前
20秒前
20秒前
Milo发布了新的文献求助10
20秒前
Sean发布了新的文献求助10
21秒前
21秒前
djsj应助粘豆包采纳,获得20
21秒前
22秒前
22秒前
ZYX完成签到,获得积分10
23秒前
23秒前
23秒前
外向芹菜完成签到,获得积分10
23秒前
24秒前
24秒前
浩二发布了新的文献求助10
25秒前
wufabini完成签到 ,获得积分10
25秒前
huihui发布了新的文献求助10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880