Multigranularity Coverage Criteria for Deep Learning Libraries

计算机科学 深度学习 人工智能 情报检索
作者
Ying Shi,Zheng Zheng,Beibei Yin,Zhiyu Xi
出处
期刊:Software Testing, Verification & Reliability [Wiley]
标识
DOI:10.1002/stvr.1903
摘要

ABSTRACT Deep learning (DL) systems are becoming increasingly widely used in safety domains such as self‐driving cars and unmanned aerial vehicles, which arouse natural concerns about their trustworthiness. Underlying DL libraries used in the construction and execution of DL models are involved in the testing processes of DL systems. Therefore, bugs in DL libraries can inevitably cause unexpected behaviours in DL systems. The internal structures of DL libraries are described as APIs with different functionalities, and DL libraries offer model developers access to DL techniques with various API parameter settings. The above characteristics of DL libraries reveal that existing DL coverage criteria are not designed specifically for DL libraries, and traditional software coverage criteria do not apply to DL libraries either. The paper introduces the first set of coverage criteria specifically designed for the systematic measurement of DL libraries across various granularities. APIs, as the fundamental components of DL libraries, are used to define coverage criteria gauging testing adequacy by thoroughly considering their invocation, implementation, parameter quantities and parameter attributes. Furthermore, some properties depicting relations between coverage criteria are investigated. Experiments on the effectiveness of the proposed coverage criteria and comparative analysis are conducted by interval estimate and hypothesis testing techniques for APIs in two well‐known DL libraries. The experimental results demonstrate that the proposed coverage criteria are effective in measuring the test adequacy of DL libraries, and they can be used for the quantitative analysis of test model quality in DL libraries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MoriZhang完成签到,获得积分10
1秒前
2秒前
2秒前
DT发布了新的文献求助10
3秒前
赵千灵发布了新的文献求助10
3秒前
自行车v完成签到,获得积分10
3秒前
5秒前
5秒前
CoCo完成签到,获得积分10
5秒前
高高雅青完成签到,获得积分20
6秒前
沉静代秋发布了新的文献求助10
6秒前
7秒前
盱眙庵完成签到,获得积分10
8秒前
烟花应助王志远采纳,获得10
8秒前
8秒前
谁都别想PUA我完成签到,获得积分10
9秒前
9秒前
9秒前
Orange应助风中的小鸽子采纳,获得10
10秒前
10秒前
11秒前
11秒前
MrW发布了新的文献求助10
12秒前
兴奋硬币发布了新的文献求助30
12秒前
英俊的铭应助Ono采纳,获得10
12秒前
12秒前
共享精神应助小萌采纳,获得10
13秒前
13秒前
14秒前
木子乐发布了新的文献求助10
14秒前
自觉远山完成签到,获得积分10
14秒前
朱砂发布了新的文献求助10
14秒前
lllllnnnnj发布了新的文献求助10
15秒前
悠悠发布了新的文献求助10
15秒前
1010完成签到,获得积分10
16秒前
Hilda007发布了新的文献求助10
17秒前
17秒前
lisier完成签到,获得积分10
17秒前
科研通AI6应助汤圆采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582