Multigranularity Coverage Criteria for Deep Learning Libraries

计算机科学 深度学习 人工智能 情报检索
作者
Ying Shi,Zheng Zheng,Beibei Yin,Zhiyu Xi
出处
期刊:Software Testing, Verification & Reliability [Wiley]
标识
DOI:10.1002/stvr.1903
摘要

ABSTRACT Deep learning (DL) systems are becoming increasingly widely used in safety domains such as self‐driving cars and unmanned aerial vehicles, which arouse natural concerns about their trustworthiness. Underlying DL libraries used in the construction and execution of DL models are involved in the testing processes of DL systems. Therefore, bugs in DL libraries can inevitably cause unexpected behaviours in DL systems. The internal structures of DL libraries are described as APIs with different functionalities, and DL libraries offer model developers access to DL techniques with various API parameter settings. The above characteristics of DL libraries reveal that existing DL coverage criteria are not designed specifically for DL libraries, and traditional software coverage criteria do not apply to DL libraries either. The paper introduces the first set of coverage criteria specifically designed for the systematic measurement of DL libraries across various granularities. APIs, as the fundamental components of DL libraries, are used to define coverage criteria gauging testing adequacy by thoroughly considering their invocation, implementation, parameter quantities and parameter attributes. Furthermore, some properties depicting relations between coverage criteria are investigated. Experiments on the effectiveness of the proposed coverage criteria and comparative analysis are conducted by interval estimate and hypothesis testing techniques for APIs in two well‐known DL libraries. The experimental results demonstrate that the proposed coverage criteria are effective in measuring the test adequacy of DL libraries, and they can be used for the quantitative analysis of test model quality in DL libraries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hefunan完成签到,获得积分10
2秒前
xht发布了新的文献求助10
3秒前
3秒前
3秒前
寂寞的无敌完成签到,获得积分10
3秒前
打打应助酷酷妙梦采纳,获得10
3秒前
3秒前
demo1发布了新的文献求助10
3秒前
4秒前
天份完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
rabwang完成签到,获得积分10
4秒前
4秒前
4秒前
慕青应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
NattyPoe应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小陈发布了新的文献求助20
5秒前
小二郎应助转圈圈采纳,获得10
5秒前
toutou应助刘老师采纳,获得10
6秒前
FFF发布了新的文献求助10
7秒前
Rocc发布了新的文献求助50
7秒前
mao发布了新的文献求助10
7秒前
歪歪完成签到,获得积分10
7秒前
8秒前
ze发布了新的文献求助10
8秒前
Ziy发布了新的文献求助30
9秒前
dgz完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758607
求助须知:如何正确求助?哪些是违规求助? 5516616
关于积分的说明 15391531
捐赠科研通 4895924
什么是DOI,文献DOI怎么找? 2633383
邀请新用户注册赠送积分活动 1581501
关于科研通互助平台的介绍 1537138