Multigranularity Coverage Criteria for Deep Learning Libraries

计算机科学 深度学习 人工智能 情报检索
作者
Ying Shi,Zheng Zheng,Beibei Yin,Zhiyu Xi
出处
期刊:Software Testing, Verification & Reliability [Wiley]
标识
DOI:10.1002/stvr.1903
摘要

ABSTRACT Deep learning (DL) systems are becoming increasingly widely used in safety domains such as self‐driving cars and unmanned aerial vehicles, which arouse natural concerns about their trustworthiness. Underlying DL libraries used in the construction and execution of DL models are involved in the testing processes of DL systems. Therefore, bugs in DL libraries can inevitably cause unexpected behaviours in DL systems. The internal structures of DL libraries are described as APIs with different functionalities, and DL libraries offer model developers access to DL techniques with various API parameter settings. The above characteristics of DL libraries reveal that existing DL coverage criteria are not designed specifically for DL libraries, and traditional software coverage criteria do not apply to DL libraries either. The paper introduces the first set of coverage criteria specifically designed for the systematic measurement of DL libraries across various granularities. APIs, as the fundamental components of DL libraries, are used to define coverage criteria gauging testing adequacy by thoroughly considering their invocation, implementation, parameter quantities and parameter attributes. Furthermore, some properties depicting relations between coverage criteria are investigated. Experiments on the effectiveness of the proposed coverage criteria and comparative analysis are conducted by interval estimate and hypothesis testing techniques for APIs in two well‐known DL libraries. The experimental results demonstrate that the proposed coverage criteria are effective in measuring the test adequacy of DL libraries, and they can be used for the quantitative analysis of test model quality in DL libraries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成成完成签到 ,获得积分10
1秒前
1秒前
水形物语发布了新的文献求助10
2秒前
阿托品完成签到,获得积分10
2秒前
634301059完成签到 ,获得积分10
2秒前
斯文败类应助啊标采纳,获得10
2秒前
NMZN完成签到,获得积分10
4秒前
JamesPei应助爱听歌的从筠采纳,获得10
5秒前
xuwenwen完成签到,获得积分10
6秒前
安容天完成签到,获得积分10
6秒前
无奈醉柳完成签到,获得积分10
7秒前
leng发布了新的文献求助30
7秒前
8秒前
8秒前
勤劳的香菇完成签到,获得积分20
13秒前
打打应助空曲采纳,获得10
14秒前
Jacklzu完成签到,获得积分10
14秒前
sims发布了新的文献求助10
14秒前
欢喜小霸王完成签到 ,获得积分10
15秒前
niekyang发布了新的文献求助10
15秒前
15秒前
爆米花应助boom采纳,获得30
15秒前
CipherSage应助任性茉莉采纳,获得10
16秒前
李瑞康完成签到 ,获得积分10
17秒前
17秒前
18秒前
搞怪半烟完成签到,获得积分10
19秒前
19秒前
None发布了新的文献求助10
21秒前
Li完成签到,获得积分10
21秒前
chanyi发布了新的文献求助10
22秒前
syy发布了新的文献求助10
22秒前
十七完成签到 ,获得积分10
23秒前
24秒前
www完成签到,获得积分10
24秒前
leng完成签到,获得积分10
24秒前
24秒前
合适磬发布了新的文献求助10
24秒前
haiqi完成签到,获得积分10
24秒前
25秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557