Multigranularity Coverage Criteria for Deep Learning Libraries

计算机科学 深度学习 人工智能 情报检索
作者
Ying Shi,Zheng Zheng,Beibei Yin,Zhiyu Xi
出处
期刊:Software Testing, Verification & Reliability [Wiley]
标识
DOI:10.1002/stvr.1903
摘要

ABSTRACT Deep learning (DL) systems are becoming increasingly widely used in safety domains such as self‐driving cars and unmanned aerial vehicles, which arouse natural concerns about their trustworthiness. Underlying DL libraries used in the construction and execution of DL models are involved in the testing processes of DL systems. Therefore, bugs in DL libraries can inevitably cause unexpected behaviours in DL systems. The internal structures of DL libraries are described as APIs with different functionalities, and DL libraries offer model developers access to DL techniques with various API parameter settings. The above characteristics of DL libraries reveal that existing DL coverage criteria are not designed specifically for DL libraries, and traditional software coverage criteria do not apply to DL libraries either. The paper introduces the first set of coverage criteria specifically designed for the systematic measurement of DL libraries across various granularities. APIs, as the fundamental components of DL libraries, are used to define coverage criteria gauging testing adequacy by thoroughly considering their invocation, implementation, parameter quantities and parameter attributes. Furthermore, some properties depicting relations between coverage criteria are investigated. Experiments on the effectiveness of the proposed coverage criteria and comparative analysis are conducted by interval estimate and hypothesis testing techniques for APIs in two well‐known DL libraries. The experimental results demonstrate that the proposed coverage criteria are effective in measuring the test adequacy of DL libraries, and they can be used for the quantitative analysis of test model quality in DL libraries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助坚定迎天采纳,获得10
1秒前
Daaz完成签到,获得积分10
1秒前
曹雄发布了新的文献求助10
2秒前
wp4455777发布了新的文献求助10
2秒前
JFP发布了新的文献求助10
3秒前
Owen应助yang111222333采纳,获得30
3秒前
完美世界应助麦子采纳,获得10
3秒前
英俊的铭应助麦子采纳,获得10
3秒前
wanci应助麦子采纳,获得10
3秒前
丘比特应助麦子采纳,获得10
3秒前
程栀发布了新的文献求助10
4秒前
4秒前
6秒前
等你发布了新的文献求助10
7秒前
7秒前
tytyty完成签到,获得积分10
7秒前
8秒前
8秒前
背后海亦应助科研通管家采纳,获得20
8秒前
大模型应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
乙酰水杨酸完成签到 ,获得积分10
8秒前
大个应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得20
9秒前
华仔应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
CyrusSo524应助hongxing liu采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545