材料科学
单层
兴奋剂
碳纤维
纳米技术
电子结构
化学物理
光电子学
凝聚态物理
复合材料
复合数
物理
作者
Zhihong Shi,Ying Wang,Jinghan Ji,Guili Liu,Guoying Zhang
出处
期刊:NANO
[World Scientific]
日期:2024-11-15
标识
DOI:10.1142/s1793292024501649
摘要
In this paper, a method based on density functional theory is used to replace varying numbers of sulfur atoms with carbon atoms in the original monolayer ZrS 2 system, resulting in a new doped system. The theory is based on the First Principle. The photovoltaic properties of the new carbon-atom doping systems have been calculated and investigated. The pristine system and the carbon-atom doped systems were structurally optimized using the automatic optimization method. It was found that the stability of the structure decreases as the number of carbon atoms increases. Pristine monolayer 1T-ZrS 2 is an indirect bandgap material. The results show that after doping carbon atoms in monolayer 1T-ZrS 2 , the p-type conductivity of the system increases and exhibits metallicity. The density of states analysis shows that the conduction band consists mainly of S-3p, Zr-4d, Zr-4p, Zr-5s and C-2p orbitals, while the valence band consists mainly of S-3p, S-3s, Zr-4d, C-2p and C-2s orbitals. It is concluded that strong hybridization between Zr-d and S-p orbitals is exhibited by both the pristine and doped systems. The analysis of the optical properties shows that the peak absorption coefficient and reflectivity peaks are blue-shifted in the doped system, and these peaks are lower than in the pristine system. The peaks of the real and imaginary parts of the dielectric function are also blue shifted. With the increase of doping concentration, the system’s energy loss decreases, indicating that proper doping can effectively reduce the system’s energy loss. The above studies provide theoretical support for applying ZrS 2 in nano-optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI