Effect of Doped Carbon Atoms on Electronic Structure and Optical Properties of Monolayer 1T-ZrS2

材料科学 单层 兴奋剂 碳纤维 纳米技术 电子结构 化学物理 光电子学 凝聚态物理 复合材料 复合数 物理
作者
Zhihong Shi,Ying Wang,Jinghan Ji,Guili Liu,Guoying Zhang
出处
期刊:NANO [World Scientific]
标识
DOI:10.1142/s1793292024501649
摘要

In this paper, a method based on density functional theory is used to replace varying numbers of sulfur atoms with carbon atoms in the original monolayer ZrS 2 system, resulting in a new doped system. The theory is based on the First Principle. The photovoltaic properties of the new carbon-atom doping systems have been calculated and investigated. The pristine system and the carbon-atom doped systems were structurally optimized using the automatic optimization method. It was found that the stability of the structure decreases as the number of carbon atoms increases. Pristine monolayer 1T-ZrS 2 is an indirect bandgap material. The results show that after doping carbon atoms in monolayer 1T-ZrS 2 , the p-type conductivity of the system increases and exhibits metallicity. The density of states analysis shows that the conduction band consists mainly of S-3p, Zr-4d, Zr-4p, Zr-5s and C-2p orbitals, while the valence band consists mainly of S-3p, S-3s, Zr-4d, C-2p and C-2s orbitals. It is concluded that strong hybridization between Zr-d and S-p orbitals is exhibited by both the pristine and doped systems. The analysis of the optical properties shows that the peak absorption coefficient and reflectivity peaks are blue-shifted in the doped system, and these peaks are lower than in the pristine system. The peaks of the real and imaginary parts of the dielectric function are also blue shifted. With the increase of doping concentration, the system’s energy loss decreases, indicating that proper doping can effectively reduce the system’s energy loss. The above studies provide theoretical support for applying ZrS 2 in nano-optoelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sky完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
dongkaimi发布了新的文献求助10
4秒前
李金奥完成签到 ,获得积分10
4秒前
sky发布了新的文献求助20
5秒前
5秒前
WOLF发布了新的文献求助10
6秒前
SciGPT应助ira采纳,获得10
7秒前
7秒前
8秒前
香蕉觅云应助KingLancet采纳,获得10
8秒前
Orange应助周末万岁采纳,获得10
11秒前
自然紫山完成签到,获得积分10
11秒前
11秒前
打个酱油完成签到,获得积分10
12秒前
12秒前
lia发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
空中风也完成签到,获得积分10
17秒前
17秒前
18秒前
清韵随笔发布了新的文献求助10
18秒前
丫丫关注了科研通微信公众号
18秒前
虚幻的安柏完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
chuanyin发布了新的文献求助10
20秒前
22秒前
苏78发布了新的文献求助10
23秒前
顾家老攻发布了新的文献求助10
24秒前
一介书生发布了新的文献求助10
25秒前
斯文败类应助苏78采纳,获得10
26秒前
27秒前
周末万岁发布了新的文献求助10
28秒前
斯文败类应助roclie采纳,获得10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258254
求助须知:如何正确求助?哪些是违规求助? 2900041
关于积分的说明 8308652
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395597
科研通“疑难数据库(出版商)”最低求助积分说明 653130
邀请新用户注册赠送积分活动 631049