Profiling immune cell-related gene features and immunoregulatory ceRNA in ischemic stroke

免疫系统 缺血性中风 基因 计算生物学 仿形(计算机编程) 基因表达谱 生物 医学 免疫学 基因表达 遗传学 计算机科学 内科学 缺血 操作系统
作者
Yanbo Li,Sicheng Liu,Linda Wen,Linzhu Zhang,Lei Xue,Yaguang Zhang,Lei Qiu,He Li,Junhong Han
出处
期刊:Molecular biomedicine [Springer Nature]
卷期号:5 (1)
标识
DOI:10.1186/s43556-024-00237-4
摘要

Abstract Molecules in immune cells plays a vital role in the pathogenesis of ischemic stroke (IS). The aim of this study is to profile the landscape of molecules on the basis of immune cells in IS peripheral blood and construct an immunoregulatory competing endogenous RNA (ceRNA) network. We collected and combined multiple public transcriptome datasets from the peripheral blood of IS patients and healthy controls. CIBERSORT deconvolution revealed that the proportions of CD8 and CD4 naive T cells, monocytes, and neutrophils changed significantly in the IS group. Intersecting the immune cell-related genes identified by weighted gene co-expression network analysis (WGCNA) and differential expression analysis, 38 overlapping candidate biomarkers were selected. Three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and random forest were applied, and 11 distinct immune cell-related genes were identified. We obtained the mRNA-miRNA and miRNA-lncRNA interactions from StarBase v3.0, and constructed a ceRNA network based on the differentially expressed mRNAs, miRNAs, and lncRNAs. The aberrant expression of HECW2-centered ceRNAs in the peripheral blood of in-house patients was validated using quantitative PCR. We also revealed that the expression of HECW2 was positively correlated with lncRNAs LINC02593 through miRNAs miR-130a-3p, miR-130b-3p and miR-148b-3p in cells. These results show that there are distinct immune features between IS patients and healthy controls. The ceRNA network may help elucidate the mechanism of immune cell-related genes in IS and may serve as a therapeutic target.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jinyang完成签到 ,获得积分10
刚刚
达尔文完成签到 ,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
10秒前
久旱逢甘霖完成签到 ,获得积分10
11秒前
谢陈完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
NEPUJuly发布了新的文献求助10
20秒前
jun完成签到 ,获得积分10
22秒前
小不完成签到 ,获得积分10
23秒前
oleskarabach发布了新的文献求助10
25秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
spring完成签到 ,获得积分10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
xiuxiu125发布了新的文献求助10
40秒前
Shandongdaxiu完成签到 ,获得积分10
47秒前
勤恳的雪卉完成签到,获得积分0
48秒前
hxpxp完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
ng完成签到 ,获得积分10
54秒前
可爱可愁完成签到,获得积分10
54秒前
CQ完成签到 ,获得积分10
55秒前
Fezz完成签到 ,获得积分10
56秒前
梓树完成签到,获得积分10
57秒前
cici妈完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
愉快道之完成签到 ,获得积分10
1分钟前
shero快毕业完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856