亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagonal loading common spatial patterns with Pearson correlation coefficient based feature selection for efficient motor imagery classification

脑-机接口 计算机科学 人工智能 判别式 模式识别(心理学) 皮尔逊积矩相关系数 运动表象 朴素贝叶斯分类器 特征选择 特征提取 过度拟合 相关性 数据挖掘 机器学习 脑电图 支持向量机 人工神经网络 统计 数学 精神科 心理学 几何学
作者
Hanaa S. Ali,Asmaa I. Ismail,El‐Sayed M. El‐Rabaie,Fathi E. Abd El‐Samie
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:: 1-15
标识
DOI:10.1080/10255842.2025.2457122
摘要

The conversion of a person's intentions into device commands through the use of brain-computer interface (BCI) is a feasible communication method for individuals with nervous system disorders. While common spatial pattern (CSP) is commonly used for feature extraction in BCIs, it has limitations. It is known for its susceptibility to noise and tendency to overfit. Moreover, high-dimensional, and irrelevant features can make it harder for a classifier to learn effectively. To address these challenges, exploring potential solutions is crucial. This paper introduces Regularized CSP with diagonal loading (DL-CSP) and Pearson correlation coefficient (PCC) based feature selection to extract the most discriminative motor imagery EEG (MI-EEG) features. Three classifiers in an ensemble are considered; bidirectional long short-term memory (Bi-LSTM), K-nearest neighbors (KNN) and naïve Bayes (NB). Decision level fusion through majority voting is exploited to leverage diverse perspectives and increase the overall system robustness. Experiments have been implemented using three publicly available datasets for MI classification; BCI competition IV-IIA (data-1), BCI Competition III-IVa (data-2), and a stroke patients' dataset (data-3). The accuracy achieved, according to the results, is 86.96% for data-1, 91.70% for data-2, and 85.75% for data-3. These percentages outperform the accuracy achieved by any state-of-the-art techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu2025完成签到,获得积分10
4秒前
22秒前
茄子发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
29秒前
36秒前
独特的师完成签到,获得积分10
40秒前
完美世界应助世良采纳,获得10
42秒前
vince完成签到 ,获得积分10
43秒前
凌晨洋发布了新的文献求助10
53秒前
54秒前
科研通AI6应助沉静的迎荷采纳,获得10
1分钟前
凌洛尘发布了新的文献求助10
1分钟前
稳重的白筠完成签到 ,获得积分10
1分钟前
1分钟前
kei完成签到 ,获得积分10
1分钟前
世良发布了新的文献求助10
1分钟前
凌晨洋完成签到,获得积分10
1分钟前
李爱国应助基根豹采纳,获得10
1分钟前
星辰大海应助Tuzi采纳,获得10
1分钟前
1分钟前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
bless完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
凌洛尘完成签到,获得积分10
1分钟前
wtt完成签到,获得积分20
1分钟前
VDC发布了新的文献求助10
1分钟前
独特鸽子完成签到 ,获得积分10
1分钟前
狗狗完成签到 ,获得积分10
1分钟前
小二郎应助世良采纳,获得10
1分钟前
Werner完成签到 ,获得积分10
1分钟前
SciGPT应助outlast采纳,获得10
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341