A Multiscale Nonlocal Feature Extraction Network for Breast Lesion Segmentation in Ultrasound Images

分割 计算机科学 人工智能 背景(考古学) 特征提取 编码器 特征(语言学) 乳腺超声检查 模式识别(心理学) 图像分割 计算机视觉 乳腺摄影术 乳腺癌 医学 古生物学 语言学 哲学 癌症 内科学 生物 操作系统
作者
Guoqi Liu,Jiajia Wang,Dong Liu,Baofang Chang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:7
标识
DOI:10.1109/tim.2023.3265107
摘要

Breast lesion segmentation in ultrasound images is of great importance since it can help us to characterize and localize lesion regions. However, low-quality imaging, blurred boundary, and variable lesion shapes bring challenges to accurate segmentation. In recent years, many U-Net variants have been proposed and successfully applied to breast lesion segmentation. However, these methods suffer from two limitations: (1) Ignoring the ability to capture rich global context information, and (2) Introducing extra complex operations. To alleviate these challenges, we propose a multiscale nonlocal feature extraction network (MNFE-Net) for accurately segmenting breast lesions. The core idea includes three points: (1) Parallel Encoder models long-range dependencies, (2) Multiscale Feature Module refines local features without introducing extra complex operations, and (3) Global Feature Guidance Module extracts global semantic information. MNFE-Net mainly has the following advantages: (1) The method has excellent performance for segmentation of malignant breast lesions, (2) The Parallel Encoder increases network parameters without significantly decreasing inference speed, and (3) The method is easy to understand and execute. Extensive experiment results with six state-of-the-art (SOTA) methods on three public breast ultrasound datasets demonstrate the superior segmentation performance of our proposed MNFE-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小蘑菇应助李大仁采纳,获得10
1秒前
1秒前
downloadpapers应助熊一只采纳,获得10
2秒前
zxb完成签到,获得积分20
2秒前
咕叽咕叽完成签到,获得积分20
2秒前
Jerrycrazy发布了新的文献求助10
2秒前
3秒前
3秒前
Muran发布了新的文献求助10
4秒前
4秒前
地地道道的完成签到,获得积分10
4秒前
氼乚发布了新的文献求助30
5秒前
畅快友桃发布了新的文献求助10
6秒前
今后应助飞在夏夜的猫采纳,获得10
6秒前
充电宝应助cz采纳,获得10
6秒前
zho发布了新的文献求助200
7秒前
sing发布了新的文献求助10
7秒前
可可发布了新的文献求助10
7秒前
险胜应助SYX采纳,获得10
7秒前
8秒前
syrrr要发文章完成签到 ,获得积分10
8秒前
搜集达人应助吹风的田采纳,获得10
9秒前
研友_Lpaepn完成签到 ,获得积分20
9秒前
Ava应助白踏歌采纳,获得10
9秒前
Owen应助松松采纳,获得10
10秒前
呵呵贺哈发布了新的文献求助30
10秒前
10秒前
竹坞听荷发布了新的文献求助20
11秒前
美人鱼发布了新的文献求助10
11秒前
11秒前
12秒前
没事打卡完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助会飞的小白采纳,获得10
13秒前
S1008完成签到,获得积分10
13秒前
摸鱼完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945