Soil Temperature Prediction Based on 1D-CNN-MLP Neural Network Model

卷积神经网络 感知器 人工神经网络 均方误差 计算机科学 多层感知器 趋同(经济学) 土壤科学 算法 人工智能 环境科学 模式识别(心理学) 数学 统计 经济增长 经济
作者
Yujie Wang,Dongling Zhuang,Jinghui Xu,Yemin Wang
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:66 (2): 381-392 被引量:3
标识
DOI:10.13031/ja.15354
摘要

Highlights To predict soil temperature, a new deep learning model called 1D-CNN-MLP is proposed, which has higher accuracy or faster convergence compared with MLP or LSTM. Convolutional neural network part in the model could extract and calculate transmission of soil temperature. Using the non-sequential data of several soil temperature layers combined with the model, we can predict other temperature layers. The model can greatly reduce the difficulty and cost of soil temperature measurement. Abstract. Soil temperature plays an important role in agriculture. In order to achieve cost reduction in the sensor arrangement when monitoring soil temperature, a novel model called 1D-CNN-MLP (One dimensional convolutional neural network-Multilayer perceptron) was proposed for soil temperature prediction. Meteorological data and soil temperature data on different soil layers collected for the 2018~2021 period from a weather station in Yangling, China, were used for calculation in our work. Our model was evaluated using statistical measures of MSE (Mean Square error). The model parameters with high operation efficiency and high accuracy are obtained, and the training result records much lower error than MLP (multilayer perceptron) and faster convergence than LSTM (long short-term memory) with an MSE of 0.288 x 10&-3. The 1D-CNN (One-dimensional convolutional neural network) part of the model is used to reveal and extrapolate the law of how soil temperature propagates in different soil layers. In the case where only three layers of soil temperature data are known, the characteristic temperature layer depths of 10 cm, 15 cm, and 40 cm, are selected to place sensors and obtain the best prediction effect of soil temperature at different depths of 5 to 160 cm with a RMSE (Root mean squared error) of 1.988?. The model may help users with improved and economical soil temperature prediction and control, thus boosting crop yield. Ultimately, we found the model has a relatively poor performance in the accuracy of deep soil temperature prediction when only three layers of soil temperature data are known, and it is suggested that the model can be further optimized in terms of kernel parameter setting, data composition, and the variation law of deep soil temperature. Keywords: 1D-CNN, MLP, Soil temperature prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1q完成签到,获得积分10
刚刚
铁瓜李完成签到 ,获得积分10
刚刚
Misty_完成签到,获得积分10
刚刚
李爱国应助查理采纳,获得10
刚刚
ling发布了新的文献求助10
1秒前
jhw完成签到 ,获得积分10
3秒前
TRACEY完成签到,获得积分10
4秒前
4秒前
今后应助咋咋采纳,获得10
5秒前
5秒前
shiqi完成签到,获得积分10
6秒前
超级的鞅发布了新的文献求助10
6秒前
yutos完成签到,获得积分20
7秒前
7秒前
Hello应助整个der采纳,获得10
8秒前
9秒前
可爱妹发布了新的文献求助10
10秒前
冉遗应助ll采纳,获得10
10秒前
调皮傲旋发布了新的文献求助30
10秒前
Suc发布了新的文献求助10
11秒前
四号花店发布了新的文献求助10
12秒前
12秒前
12秒前
传奇3应助lei采纳,获得10
15秒前
15秒前
16秒前
传奇3应助超级的鞅采纳,获得10
16秒前
香风智乃完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
mi完成签到,获得积分10
18秒前
hancyzhang完成签到 ,获得积分10
19秒前
19秒前
19秒前
19秒前
汉堡包应助shi hui采纳,获得10
20秒前
20秒前
BowieHuang发布了新的文献求助30
22秒前
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488