重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Soil Temperature Prediction Based on 1D-CNN-MLP Neural Network Model

卷积神经网络 感知器 人工神经网络 均方误差 计算机科学 多层感知器 趋同(经济学) 土壤科学 算法 人工智能 环境科学 模式识别(心理学) 数学 统计 经济增长 经济
作者
Yujie Wang,Dongling Zhuang,Jinghui Xu,Yemin Wang
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:66 (2): 381-392 被引量:3
标识
DOI:10.13031/ja.15354
摘要

Highlights To predict soil temperature, a new deep learning model called 1D-CNN-MLP is proposed, which has higher accuracy or faster convergence compared with MLP or LSTM. Convolutional neural network part in the model could extract and calculate transmission of soil temperature. Using the non-sequential data of several soil temperature layers combined with the model, we can predict other temperature layers. The model can greatly reduce the difficulty and cost of soil temperature measurement. Abstract. Soil temperature plays an important role in agriculture. In order to achieve cost reduction in the sensor arrangement when monitoring soil temperature, a novel model called 1D-CNN-MLP (One dimensional convolutional neural network-Multilayer perceptron) was proposed for soil temperature prediction. Meteorological data and soil temperature data on different soil layers collected for the 2018~2021 period from a weather station in Yangling, China, were used for calculation in our work. Our model was evaluated using statistical measures of MSE (Mean Square error). The model parameters with high operation efficiency and high accuracy are obtained, and the training result records much lower error than MLP (multilayer perceptron) and faster convergence than LSTM (long short-term memory) with an MSE of 0.288 x 10&-3. The 1D-CNN (One-dimensional convolutional neural network) part of the model is used to reveal and extrapolate the law of how soil temperature propagates in different soil layers. In the case where only three layers of soil temperature data are known, the characteristic temperature layer depths of 10 cm, 15 cm, and 40 cm, are selected to place sensors and obtain the best prediction effect of soil temperature at different depths of 5 to 160 cm with a RMSE (Root mean squared error) of 1.988?. The model may help users with improved and economical soil temperature prediction and control, thus boosting crop yield. Ultimately, we found the model has a relatively poor performance in the accuracy of deep soil temperature prediction when only three layers of soil temperature data are known, and it is suggested that the model can be further optimized in terms of kernel parameter setting, data composition, and the variation law of deep soil temperature. Keywords: 1D-CNN, MLP, Soil temperature prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
maybe豪发布了新的文献求助10
1秒前
archieeee完成签到,获得积分10
1秒前
暮鼓发布了新的文献求助10
1秒前
汉堡包应助拂晨柳絮采纳,获得10
1秒前
1秒前
给我个二硫碘化钾完成签到,获得积分10
1秒前
orixero应助忆仙姿采纳,获得10
1秒前
王晓蕾发布了新的文献求助10
2秒前
深灰色完成签到,获得积分10
2秒前
隐形曼青应助Niko采纳,获得10
2秒前
痛失饭搭子完成签到,获得积分10
2秒前
2秒前
潘昶发布了新的文献求助10
3秒前
陈坤完成签到,获得积分10
3秒前
橘子1发布了新的文献求助10
3秒前
wax发布了新的文献求助10
4秒前
小二郎应助zl采纳,获得10
4秒前
科研通AI6应助lilili2060采纳,获得10
4秒前
大力冰棍关注了科研通微信公众号
4秒前
5秒前
飞翔的霸天哥应助穆穆穆采纳,获得30
5秒前
5秒前
6秒前
6秒前
巴布鲁斯发布了新的文献求助10
6秒前
Sway完成签到,获得积分10
6秒前
suik发布了新的文献求助10
6秒前
6秒前
暮鼓完成签到,获得积分20
6秒前
gugugaga完成签到,获得积分10
7秒前
李美丽完成签到,获得积分10
7秒前
沉默新烟完成签到,获得积分10
7秒前
swallow发布了新的文献求助10
7秒前
nixiaozhi发布了新的文献求助10
8秒前
充电宝应助quan采纳,获得30
9秒前
9秒前
毅毅子发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466797
求助须知:如何正确求助?哪些是违规求助? 4570521
关于积分的说明 14325828
捐赠科研通 4497083
什么是DOI,文献DOI怎么找? 2463730
邀请新用户注册赠送积分活动 1452656
关于科研通互助平台的介绍 1427590