Soil Temperature Prediction Based on 1D-CNN-MLP Neural Network Model

卷积神经网络 感知器 人工神经网络 均方误差 计算机科学 多层感知器 趋同(经济学) 土壤科学 算法 人工智能 环境科学 模式识别(心理学) 数学 统计 经济 经济增长
作者
Yujie Wang,Dongling Zhuang,Jinghui Xu,Yemin Wang
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:66 (2): 381-392 被引量:3
标识
DOI:10.13031/ja.15354
摘要

Highlights To predict soil temperature, a new deep learning model called 1D-CNN-MLP is proposed, which has higher accuracy or faster convergence compared with MLP or LSTM. Convolutional neural network part in the model could extract and calculate transmission of soil temperature. Using the non-sequential data of several soil temperature layers combined with the model, we can predict other temperature layers. The model can greatly reduce the difficulty and cost of soil temperature measurement. Abstract. Soil temperature plays an important role in agriculture. In order to achieve cost reduction in the sensor arrangement when monitoring soil temperature, a novel model called 1D-CNN-MLP (One dimensional convolutional neural network-Multilayer perceptron) was proposed for soil temperature prediction. Meteorological data and soil temperature data on different soil layers collected for the 2018~2021 period from a weather station in Yangling, China, were used for calculation in our work. Our model was evaluated using statistical measures of MSE (Mean Square error). The model parameters with high operation efficiency and high accuracy are obtained, and the training result records much lower error than MLP (multilayer perceptron) and faster convergence than LSTM (long short-term memory) with an MSE of 0.288 x 10&-3. The 1D-CNN (One-dimensional convolutional neural network) part of the model is used to reveal and extrapolate the law of how soil temperature propagates in different soil layers. In the case where only three layers of soil temperature data are known, the characteristic temperature layer depths of 10 cm, 15 cm, and 40 cm, are selected to place sensors and obtain the best prediction effect of soil temperature at different depths of 5 to 160 cm with a RMSE (Root mean squared error) of 1.988?. The model may help users with improved and economical soil temperature prediction and control, thus boosting crop yield. Ultimately, we found the model has a relatively poor performance in the accuracy of deep soil temperature prediction when only three layers of soil temperature data are known, and it is suggested that the model can be further optimized in terms of kernel parameter setting, data composition, and the variation law of deep soil temperature. Keywords: 1D-CNN, MLP, Soil temperature prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cya发布了新的文献求助10
刚刚
Mira完成签到,获得积分10
刚刚
刚刚
搜集达人应助裴秀智采纳,获得30
1秒前
Steven发布了新的文献求助10
1秒前
2秒前
明明明发布了新的文献求助10
2秒前
JamesPei应助ccyy采纳,获得10
2秒前
棋士发布了新的文献求助10
2秒前
美好易完成签到,获得积分10
3秒前
科研通AI2S应助枫溪采纳,获得10
3秒前
完美世界应助闫永洁采纳,获得10
3秒前
刁弘睿完成签到,获得积分10
4秒前
hq发布了新的文献求助10
4秒前
深情安青应助猜不猜不采纳,获得10
4秒前
田园镇完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
宋真玉完成签到,获得积分10
5秒前
完美世界应助cg666采纳,获得10
6秒前
猫猫无敌发布了新的文献求助10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
危机的阁应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
研友_Z60ObL完成签到,获得积分10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
mm应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425