KIF—Key Interactions Finder: A program to identify the key molecular interactions that regulate protein conformational changes

构象变化 分子动力学 计算机科学 构象集合 蛋白质-蛋白质相互作用 蛋白质结构 化学 生物系统 计算生物学 生物化学 计算化学 生物
作者
Rory Crean,Joanna S.G. Slusky,Peter M. Kasson,Shina Caroline Lynn Kamerlin
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (14) 被引量:1
标识
DOI:10.1063/5.0140882
摘要

Simulation datasets of proteins (e.g., those generated by molecular dynamics simulations) are filled with information about how a non-covalent interaction network within a protein regulates the conformation and, thus, function of the said protein. Most proteins contain thousands of non-covalent interactions, with most of these being largely irrelevant to any single conformational change. The ability to automatically process any protein simulation dataset to identify non-covalent interactions that are strongly associated with a single, defined conformational change would be a highly valuable tool for the community. Furthermore, the insights generated from this tool could be applied to basic research, in order to improve understanding of a mechanism of action, or for protein engineering, to identify candidate mutations to improve/alter the functionality of any given protein. The open-source Python package Key Interactions Finder (KIF) enables users to identify those non-covalent interactions that are strongly associated with any conformational change of interest for any protein simulated. KIF gives the user full control to define the conformational change of interest as either a continuous variable or categorical variable, and methods from statistics or machine learning can be applied to identify and rank the interactions and residues distributed throughout the protein, which are relevant to the conformational change. Finally, KIF has been applied to three diverse model systems (protein tyrosine phosphatase 1B, the PDZ3 domain, and the KE07 series of Kemp eliminases) in order to illustrate its power to identify key features that regulate functionally important conformational dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zz采纳,获得10
1秒前
Iman发布了新的文献求助10
1秒前
1秒前
老腊肉发布了新的文献求助10
1秒前
Akim应助Clover采纳,获得10
1秒前
天天呼的海角完成签到,获得积分10
2秒前
翊星发布了新的文献求助10
2秒前
XIA发布了新的文献求助10
2秒前
SK完成签到,获得积分20
2秒前
英姑应助沉默的半凡采纳,获得10
3秒前
ly发布了新的文献求助20
4秒前
4秒前
不安海燕完成签到,获得积分20
5秒前
研友_VZG7GZ应助唠叨的月光采纳,获得10
5秒前
Singularity发布了新的文献求助10
6秒前
Arthur完成签到,获得积分10
7秒前
7秒前
小七完成签到 ,获得积分20
9秒前
皮皮灰熊完成签到,获得积分10
9秒前
9秒前
Sugar完成签到,获得积分20
10秒前
幼柚发布了新的文献求助10
10秒前
程瀚砚发布了新的文献求助10
11秒前
陈小桥发布了新的文献求助10
12秒前
小巧凤凰完成签到,获得积分10
12秒前
12秒前
12秒前
肖恩发布了新的文献求助10
13秒前
翊星完成签到,获得积分10
13秒前
14秒前
14秒前
小蘑菇应助飞花的季节采纳,获得10
14秒前
温暖的绮发布了新的文献求助10
14秒前
小蘑菇应助程瀚砚采纳,获得10
16秒前
17秒前
17秒前
Jasper应助Green采纳,获得10
17秒前
恭喜发布了新的文献求助10
17秒前
念头发布了新的文献求助10
17秒前
Andy完成签到,获得积分10
18秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444043
求助须知:如何正确求助?哪些是违规求助? 3040031
关于积分的说明 8979942
捐赠科研通 2728708
什么是DOI,文献DOI怎么找? 1496621
科研通“疑难数据库(出版商)”最低求助积分说明 691791
邀请新用户注册赠送积分活动 689375