A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model

注意力网络 聚类系数 计算机科学 聚类分析 人工神经网络 数据挖掘 图形 空气质量指数 人工智能 地理 理论计算机科学 气象学
作者
Subhojit Mandal,Mainak Thakur
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:405: 137036-137036 被引量:35
标识
DOI:10.1016/j.jclepro.2023.137036
摘要

Urban environments globally are under threat due to recent climate changes caused by a variety of factors such as growing industrialization, rapid migration, increasing traffic flow, etc. An effective data-driven air pollution modeling system helps in increasing regular awareness regarding the severity of the air quality at the local level, play a preventive role in addressing the root causes and hence can be extremely useful for the urban administration. Graph Neural Networks have recently emerged for various classification and estimation tasks on graph-structured data. A Spatially Attentive Cluster-based Graph Neural Network-enabled PM2.5 concentration forecasting model (SA-GNN) is proposed to predict short-term PM2.5 concentrations by considering monitoring stations as nodes of a graph structure and exploring their spatial relationships. This modeling procedure takes into account relevant meteorological variables like wind speed, wind direction, relative humidity etc. An efficient clustering-based spatiotemporal feature extraction method is proposed within a graph neural network setting. This technique makes use of cluster-wise separated graph-structured spatiotemporal features by utilizing disjoint intermediate spatiotemporal GRU networks in order to handle spatial heterogeneity. Additionally, the use of graph attentional network (GATs) makes the modeling framework efficient. The proposed short-term PM2.5 concentrations forecasting framework is applied to the highly polluted Indian capital city, Delhi. The proposed SA-GNN model achieves R2 value 0.75, RMSE and MAE, 25.13 and 21.28 μg/m3 respectively on test data, achieving significant improvement with respect to the baseline models. In fact, even the high pollution episodes can be predicted by the SA-GNN model with better accuracy. Evidently, the proposed GNN-based air pollution modeling framework can be a potential option for forecasting of pollutants in other similar cities globally with high pollution records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
xakars完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
852应助如7而至采纳,获得10
4秒前
5秒前
zeze完成签到,获得积分20
5秒前
罗晓倩完成签到,获得积分10
6秒前
6秒前
汤泽琪发布了新的文献求助10
6秒前
幸福大白发布了新的文献求助10
6秒前
Janine发布了新的文献求助30
6秒前
超爱茶多酚完成签到,获得积分10
7秒前
沉默傲芙发布了新的文献求助10
8秒前
11秒前
dengy完成签到,获得积分10
11秒前
小马甲应助国际学术交流采纳,获得10
11秒前
Lzt应助NFF采纳,获得10
12秒前
古月发布了新的文献求助10
12秒前
沐晴发布了新的文献求助10
13秒前
星星完成签到,获得积分10
13秒前
羊村黑恶势力关注了科研通微信公众号
16秒前
17秒前
22秒前
无花果应助思维隋采纳,获得10
22秒前
26秒前
jialan_chen完成签到,获得积分20
28秒前
28秒前
coconu完成签到,获得积分20
28秒前
wbh发布了新的文献求助10
29秒前
Owen应助KT采纳,获得10
31秒前
coconu发布了新的文献求助10
32秒前
jialan_chen发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702