A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model

注意力网络 聚类系数 计算机科学 聚类分析 人工神经网络 数据挖掘 图形 空气质量指数 人工智能 地理 理论计算机科学 气象学
作者
Subhojit Mandal,Mainak Thakur
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:405: 137036-137036 被引量:35
标识
DOI:10.1016/j.jclepro.2023.137036
摘要

Urban environments globally are under threat due to recent climate changes caused by a variety of factors such as growing industrialization, rapid migration, increasing traffic flow, etc. An effective data-driven air pollution modeling system helps in increasing regular awareness regarding the severity of the air quality at the local level, play a preventive role in addressing the root causes and hence can be extremely useful for the urban administration. Graph Neural Networks have recently emerged for various classification and estimation tasks on graph-structured data. A Spatially Attentive Cluster-based Graph Neural Network-enabled PM2.5 concentration forecasting model (SA-GNN) is proposed to predict short-term PM2.5 concentrations by considering monitoring stations as nodes of a graph structure and exploring their spatial relationships. This modeling procedure takes into account relevant meteorological variables like wind speed, wind direction, relative humidity etc. An efficient clustering-based spatiotemporal feature extraction method is proposed within a graph neural network setting. This technique makes use of cluster-wise separated graph-structured spatiotemporal features by utilizing disjoint intermediate spatiotemporal GRU networks in order to handle spatial heterogeneity. Additionally, the use of graph attentional network (GATs) makes the modeling framework efficient. The proposed short-term PM2.5 concentrations forecasting framework is applied to the highly polluted Indian capital city, Delhi. The proposed SA-GNN model achieves R2 value 0.75, RMSE and MAE, 25.13 and 21.28 μg/m3 respectively on test data, achieving significant improvement with respect to the baseline models. In fact, even the high pollution episodes can be predicted by the SA-GNN model with better accuracy. Evidently, the proposed GNN-based air pollution modeling framework can be a potential option for forecasting of pollutants in other similar cities globally with high pollution records.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
傻傻的哈密瓜完成签到,获得积分10
3秒前
森婕完成签到 ,获得积分10
4秒前
4秒前
cardiology完成签到,获得积分10
5秒前
yxfhenu发布了新的文献求助10
8秒前
清风完成签到 ,获得积分10
8秒前
chenzhi发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
21秒前
思源应助英吉利25采纳,获得10
22秒前
Kenzonvay发布了新的文献求助10
23秒前
Luna完成签到 ,获得积分10
25秒前
汉堡包应助chenzhi采纳,获得10
28秒前
充电宝应助dd99081采纳,获得10
29秒前
29秒前
花花完成签到 ,获得积分10
31秒前
31秒前
老谢发布了新的文献求助10
32秒前
check003完成签到,获得积分10
32秒前
fortune完成签到,获得积分10
33秒前
彳亍完成签到,获得积分10
35秒前
36秒前
38秒前
Lin完成签到,获得积分10
39秒前
39秒前
斯文败类应助乐观鑫鹏采纳,获得10
41秒前
浮游应助LHP采纳,获得10
42秒前
Lulul发布了新的文献求助10
43秒前
bai完成签到,获得积分10
43秒前
十一玮发布了新的文献求助10
44秒前
xdmhv完成签到,获得积分10
48秒前
49秒前
Akim应助Tian采纳,获得10
51秒前
水水的完成签到 ,获得积分10
53秒前
球球尧伞耳完成签到,获得积分10
56秒前
John完成签到,获得积分10
57秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969