A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model

注意力网络 聚类系数 计算机科学 聚类分析 人工神经网络 数据挖掘 图形 空气质量指数 人工智能 地理 理论计算机科学 气象学
作者
Subhojit Mandal,Mainak Thakur
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:405: 137036-137036 被引量:19
标识
DOI:10.1016/j.jclepro.2023.137036
摘要

Urban environments globally are under threat due to recent climate changes caused by a variety of factors such as growing industrialization, rapid migration, increasing traffic flow, etc. An effective data-driven air pollution modeling system helps in increasing regular awareness regarding the severity of the air quality at the local level, play a preventive role in addressing the root causes and hence can be extremely useful for the urban administration. Graph Neural Networks have recently emerged for various classification and estimation tasks on graph-structured data. A Spatially Attentive Cluster-based Graph Neural Network-enabled PM2.5 concentration forecasting model (SA-GNN) is proposed to predict short-term PM2.5 concentrations by considering monitoring stations as nodes of a graph structure and exploring their spatial relationships. This modeling procedure takes into account relevant meteorological variables like wind speed, wind direction, relative humidity etc. An efficient clustering-based spatiotemporal feature extraction method is proposed within a graph neural network setting. This technique makes use of cluster-wise separated graph-structured spatiotemporal features by utilizing disjoint intermediate spatiotemporal GRU networks in order to handle spatial heterogeneity. Additionally, the use of graph attentional network (GATs) makes the modeling framework efficient. The proposed short-term PM2.5 concentrations forecasting framework is applied to the highly polluted Indian capital city, Delhi. The proposed SA-GNN model achieves R2 value 0.75, RMSE and MAE, 25.13 and 21.28 μg/m3 respectively on test data, achieving significant improvement with respect to the baseline models. In fact, even the high pollution episodes can be predicted by the SA-GNN model with better accuracy. Evidently, the proposed GNN-based air pollution modeling framework can be a potential option for forecasting of pollutants in other similar cities globally with high pollution records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助roy采纳,获得10
刚刚
1秒前
星辰大海应助Xbro采纳,获得10
1秒前
1秒前
科研通AI2S应助郁金香采纳,获得10
1秒前
1秒前
含糊的清完成签到,获得积分20
2秒前
iNk应助加减乘除采纳,获得10
4秒前
4秒前
郝宝真发布了新的文献求助10
5秒前
Yingkun_Xu完成签到,获得积分10
6秒前
LDH完成签到,获得积分10
6秒前
陶一二发布了新的文献求助10
6秒前
葛子尧完成签到,获得积分10
6秒前
yunsww完成签到,获得积分10
6秒前
瘦瘦的小蘑菇完成签到 ,获得积分10
6秒前
7秒前
8秒前
脑洞疼应助叶子采纳,获得10
8秒前
zzz发布了新的文献求助10
9秒前
Lucy小影完成签到,获得积分10
9秒前
852应助legna采纳,获得10
9秒前
李钟硕完成签到,获得积分10
9秒前
小马甲应助legna采纳,获得10
9秒前
Dawn完成签到,获得积分10
10秒前
欣喜的项链完成签到,获得积分20
11秒前
嘻嘻完成签到,获得积分10
11秒前
11秒前
孤独代亦完成签到,获得积分10
11秒前
yet完成签到,获得积分10
12秒前
12秒前
李爱国应助秋刀鱼不过期采纳,获得10
12秒前
volcano完成签到 ,获得积分10
13秒前
13秒前
Autken发布了新的文献求助10
13秒前
14秒前
Owen应助包容凌翠采纳,获得10
14秒前
pphhhhaannn完成签到,获得积分10
14秒前
情怀应助ZJU采纳,获得10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813