A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model

注意力网络 聚类系数 计算机科学 聚类分析 人工神经网络 数据挖掘 图形 空气质量指数 人工智能 地理 理论计算机科学 气象学
作者
Subhojit Mandal,Mainak Thakur
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:405: 137036-137036 被引量:35
标识
DOI:10.1016/j.jclepro.2023.137036
摘要

Urban environments globally are under threat due to recent climate changes caused by a variety of factors such as growing industrialization, rapid migration, increasing traffic flow, etc. An effective data-driven air pollution modeling system helps in increasing regular awareness regarding the severity of the air quality at the local level, play a preventive role in addressing the root causes and hence can be extremely useful for the urban administration. Graph Neural Networks have recently emerged for various classification and estimation tasks on graph-structured data. A Spatially Attentive Cluster-based Graph Neural Network-enabled PM2.5 concentration forecasting model (SA-GNN) is proposed to predict short-term PM2.5 concentrations by considering monitoring stations as nodes of a graph structure and exploring their spatial relationships. This modeling procedure takes into account relevant meteorological variables like wind speed, wind direction, relative humidity etc. An efficient clustering-based spatiotemporal feature extraction method is proposed within a graph neural network setting. This technique makes use of cluster-wise separated graph-structured spatiotemporal features by utilizing disjoint intermediate spatiotemporal GRU networks in order to handle spatial heterogeneity. Additionally, the use of graph attentional network (GATs) makes the modeling framework efficient. The proposed short-term PM2.5 concentrations forecasting framework is applied to the highly polluted Indian capital city, Delhi. The proposed SA-GNN model achieves R2 value 0.75, RMSE and MAE, 25.13 and 21.28 μg/m3 respectively on test data, achieving significant improvement with respect to the baseline models. In fact, even the high pollution episodes can be predicted by the SA-GNN model with better accuracy. Evidently, the proposed GNN-based air pollution modeling framework can be a potential option for forecasting of pollutants in other similar cities globally with high pollution records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易研学术发布了新的文献求助10
刚刚
黑囡完成签到,获得积分10
1秒前
张天泽完成签到,获得积分10
1秒前
2秒前
科研通AI6应助太阳地里1911采纳,获得10
2秒前
2秒前
3秒前
huangy完成签到,获得积分10
3秒前
我是老大应助HOOW采纳,获得10
3秒前
4秒前
轻松映之完成签到 ,获得积分10
4秒前
Ren发布了新的文献求助10
5秒前
英俊的铭应助叉叉茶采纳,获得10
5秒前
曹宏达完成签到,获得积分10
5秒前
5秒前
ajie发布了新的文献求助50
6秒前
hans完成签到,获得积分10
6秒前
nzsqaq发布了新的文献求助10
6秒前
ValarMorghulis完成签到,获得积分10
6秒前
7秒前
小杭76应助nuaahq采纳,获得10
7秒前
鲜于觅松发布了新的文献求助30
8秒前
8秒前
8秒前
爆米花应助111111采纳,获得10
8秒前
9秒前
9秒前
bkagyin应助热心市民王先生采纳,获得10
9秒前
小卷发布了新的文献求助10
9秒前
jue发布了新的文献求助20
9秒前
Lilianvivian完成签到,获得积分20
10秒前
10秒前
Zoe发布了新的文献求助30
10秒前
11秒前
夬鉲发布了新的文献求助10
11秒前
欧皇发布了新的文献求助60
11秒前
11秒前
lwt发布了新的文献求助10
11秒前
叶七发布了新的文献求助10
12秒前
科研通AI6应助nikonikoni采纳,获得200
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085903
求助须知:如何正确求助?哪些是违规求助? 4301887
关于积分的说明 13405716
捐赠科研通 4126924
什么是DOI,文献DOI怎么找? 2260099
邀请新用户注册赠送积分活动 1264194
关于科研通互助平台的介绍 1198415