已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cnkly完成签到,获得积分0
2秒前
刘觅儿发布了新的文献求助10
9秒前
10秒前
jiao完成签到 ,获得积分10
11秒前
15秒前
15秒前
ding应助高兴可乐采纳,获得10
16秒前
在水一方应助HightLight采纳,获得10
16秒前
酷波er应助xuz采纳,获得10
16秒前
打打应助二十二点36采纳,获得10
18秒前
图图她发布了新的文献求助10
21秒前
latadawang发布了新的文献求助30
23秒前
25秒前
27秒前
鈮宝完成签到 ,获得积分10
28秒前
lyt完成签到,获得积分10
28秒前
29秒前
芝麻是什么味道完成签到,获得积分10
30秒前
31秒前
陈靖完成签到 ,获得积分10
31秒前
信号灯完成签到 ,获得积分10
34秒前
彭小龙完成签到 ,获得积分10
36秒前
研友_VZG7GZ应助xuz采纳,获得10
39秒前
李健应助七宝大当家采纳,获得10
40秒前
酷波er应助图图她采纳,获得10
41秒前
43秒前
崔洪瑞完成签到,获得积分10
44秒前
小芙爱雪碧完成签到 ,获得积分10
47秒前
Li发布了新的文献求助10
48秒前
yznfly应助查找文献中采纳,获得10
49秒前
Nature应助欧派果奶采纳,获得30
50秒前
思源应助欧派果奶采纳,获得10
50秒前
50秒前
无花果应助欧派果奶采纳,获得10
50秒前
充电宝应助欧派果奶采纳,获得10
50秒前
刘觅儿完成签到,获得积分10
51秒前
Benjamin完成签到 ,获得积分10
52秒前
Tendency完成签到 ,获得积分10
53秒前
酷波er应助xhz采纳,获得10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663986
求助须知:如何正确求助?哪些是违规求助? 4856002
关于积分的说明 15106826
捐赠科研通 4822369
什么是DOI,文献DOI怎么找? 2581425
邀请新用户注册赠送积分活动 1535585
关于科研通互助平台的介绍 1493853