Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助qwer采纳,获得10
刚刚
刚刚
Ploaris发布了新的文献求助10
刚刚
强仔完成签到,获得积分10
1秒前
执着瓜6发布了新的文献求助10
1秒前
梦在远方完成签到 ,获得积分0
1秒前
1秒前
1秒前
xiaoxiao完成签到,获得积分10
1秒前
lgx完成签到,获得积分10
2秒前
酷波er应助cz采纳,获得10
2秒前
魔幻青枫完成签到 ,获得积分10
3秒前
WD完成签到,获得积分10
3秒前
倩倩14发布了新的文献求助10
3秒前
现代人龙发布了新的文献求助10
3秒前
4秒前
5秒前
果粒橙应助hhhg采纳,获得20
5秒前
梁成伟发布了新的文献求助10
5秒前
大山发布了新的文献求助10
5秒前
Anastasia完成签到,获得积分10
6秒前
k_1发布了新的文献求助10
6秒前
bkagyin应助长情的白枫采纳,获得10
6秒前
6秒前
7秒前
酷波er应助LJJZZX采纳,获得10
8秒前
8秒前
Maestro_S发布了新的文献求助10
8秒前
顾矜应助yz采纳,获得10
9秒前
夏天呀完成签到,获得积分10
10秒前
Lewis发布了新的文献求助10
10秒前
amberzyc应助猜猜我是谁采纳,获得10
11秒前
Qin应助猜猜我是谁采纳,获得20
11秒前
酷波er应助jupyter采纳,获得10
11秒前
Orange应助12345采纳,获得10
11秒前
xu发布了新的文献求助10
11秒前
guoyu发布了新的文献求助10
12秒前
超级天川发布了新的文献求助10
12秒前
WuYujie发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597809
求助须知:如何正确求助?哪些是违规求助? 4683336
关于积分的说明 14829182
捐赠科研通 4661620
什么是DOI,文献DOI怎么找? 2536808
邀请新用户注册赠送积分活动 1504402
关于科研通互助平台的介绍 1470232