Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Panda发布了新的文献求助10
1秒前
1秒前
chenqingsong的完成签到,获得积分20
1秒前
儒雅晓霜完成签到,获得积分20
1秒前
善学以致用应助未来可期采纳,获得30
1秒前
背后若云完成签到,获得积分10
2秒前
顺利白柏完成签到,获得积分10
2秒前
Gavin完成签到,获得积分10
2秒前
3秒前
执着完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
xia关闭了xia文献求助
4秒前
科研通AI5应助亦安采纳,获得30
4秒前
瑾沫流年发布了新的文献求助10
4秒前
Johnson发布了新的文献求助10
4秒前
标致小土豆完成签到 ,获得积分10
4秒前
5秒前
6秒前
呜呼啦呼发布了新的文献求助10
7秒前
7秒前
Moutain关注了科研通微信公众号
10秒前
呜呼啦呼完成签到,获得积分10
11秒前
Hello应助甜美老虎采纳,获得10
11秒前
HI发布了新的文献求助10
11秒前
QX发布了新的文献求助10
11秒前
12秒前
高兴尔珍发布了新的文献求助10
12秒前
田様应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962977
求助须知:如何正确求助?哪些是违规求助? 4222772
关于积分的说明 13151830
捐赠科研通 4007246
什么是DOI,文献DOI怎么找? 2193355
邀请新用户注册赠送积分活动 1207001
关于科研通互助平台的介绍 1119207