亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
12秒前
朱可欣完成签到 ,获得积分10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
酷波er应助CC采纳,获得20
46秒前
1分钟前
刘哈哈完成签到 ,获得积分10
1分钟前
CC发布了新的文献求助20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
乐乐应助ceeray23采纳,获得20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助CC采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
和风完成签到 ,获得积分10
2分钟前
俏以完成签到,获得积分10
2分钟前
体贴静竹完成签到 ,获得积分10
3分钟前
3分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
清晨仪仪发布了新的文献求助10
4分钟前
4分钟前
朴素尔阳发布了新的文献求助10
4分钟前
4分钟前
webmaster完成签到,获得积分10
4分钟前
向东是大海完成签到,获得积分10
4分钟前
5分钟前
CC发布了新的文献求助10
5分钟前
万能图书馆应助清晨仪仪采纳,获得30
5分钟前
Yihan完成签到,获得积分10
5分钟前
科研王者发布了新的文献求助10
5分钟前
老万的小迷弟完成签到,获得积分10
5分钟前
JoeyJin完成签到,获得积分10
6分钟前
我是老大应助科研王者采纳,获得10
6分钟前
6分钟前
yeeeee发布了新的文献求助10
6分钟前
ttkx发布了新的文献求助10
7分钟前
CipherSage应助yeeeee采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769808
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053