Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 哲学 管理 经济 操作系统
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayat应助木木木采纳,获得30
2秒前
小韩同学完成签到,获得积分10
2秒前
3秒前
CAOHOU应助英勇采纳,获得10
4秒前
Chen发布了新的文献求助10
4秒前
kushdw完成签到,获得积分10
5秒前
Why顺利完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
luca发布了新的文献求助10
9秒前
11秒前
迷人兰花完成签到,获得积分10
12秒前
巴斯光年完成签到,获得积分20
12秒前
Stardust完成签到,获得积分10
13秒前
jiao完成签到,获得积分10
13秒前
慕青应助Kiligso采纳,获得10
15秒前
tonghau895完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
gxzsdf完成签到 ,获得积分10
18秒前
scvrl完成签到,获得积分10
18秒前
luca完成签到,获得积分10
18秒前
18秒前
蓝胖子发布了新的文献求助10
20秒前
MHJ12306完成签到,获得积分10
20秒前
Lucas应助巴斯光年采纳,获得10
21秒前
吕易巧发布了新的文献求助10
23秒前
肆月完成签到 ,获得积分10
25秒前
韩邹光完成签到,获得积分10
25秒前
火箭Lucky完成签到 ,获得积分10
27秒前
MHJ12306发布了新的文献求助10
27秒前
咩咩羊完成签到,获得积分10
27秒前
28秒前
NexusExplorer应助doudou采纳,获得10
28秒前
28秒前
32秒前
函函函发布了新的文献求助20
34秒前
把门开开儿完成签到,获得积分10
34秒前
wzj发布了新的文献求助10
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858