Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助WUQINGHALASHAO采纳,获得10
1秒前
桃子完成签到,获得积分10
1秒前
科研狂徒发布了新的文献求助10
1秒前
愉快的烤鸡完成签到,获得积分10
1秒前
Orange应助大胆菲音采纳,获得10
2秒前
2秒前
3秒前
领导范儿应助112233445566采纳,获得10
3秒前
zhang-leo发布了新的文献求助10
4秒前
HHHH发布了新的文献求助10
4秒前
舒服的灵安完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
张丽妍发布了新的文献求助10
6秒前
7秒前
YD完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
科研通AI2S应助好好好采纳,获得10
10秒前
咋咋发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI6应助迎风映雪采纳,获得10
11秒前
科研通AI6应助研友_LNB7rL采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
脑洞疼应助DJ采纳,获得10
12秒前
12秒前
she完成签到 ,获得积分10
12秒前
Oops发布了新的文献求助10
12秒前
科研通AI6应助zhang-leo采纳,获得10
13秒前
13秒前
14秒前
Jasper应助CTT采纳,获得10
14秒前
Synthen发布了新的文献求助10
16秒前
炸安完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959