已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三水完成签到 ,获得积分10
刚刚
所所应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
美琦完成签到,获得积分10
3秒前
5秒前
9秒前
Noah完成签到,获得积分10
11秒前
哎一古完成签到,获得积分10
12秒前
16秒前
科研通AI6应助xiaofeiyan采纳,获得10
16秒前
orixero应助Gasol采纳,获得10
19秒前
19秒前
小苹果发布了新的文献求助10
22秒前
热艳娜发布了新的文献求助10
22秒前
22秒前
陶醉妙芹发布了新的文献求助10
23秒前
sansan发布了新的文献求助10
23秒前
zp19877891完成签到,获得积分10
25秒前
zsl完成签到 ,获得积分10
27秒前
火星上含芙完成签到 ,获得积分10
28秒前
36秒前
kkpzc完成签到 ,获得积分10
38秒前
pan liu完成签到,获得积分10
39秒前
KUN完成签到 ,获得积分10
40秒前
上官若男应助四海采纳,获得10
40秒前
王晨灿发布了新的文献求助10
40秒前
Jasper应助wy采纳,获得10
42秒前
逍遥小书生完成签到 ,获得积分10
43秒前
刘佳慧完成签到 ,获得积分10
43秒前
酷波er应助张永媚采纳,获得10
44秒前
44秒前
慕青应助yesir采纳,获得10
45秒前
汉堡包应助王晨灿采纳,获得10
45秒前
多年以后完成签到 ,获得积分10
47秒前
51秒前
53秒前
sansan完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627490
求助须知:如何正确求助?哪些是违规求助? 4714027
关于积分的说明 14962456
捐赠科研通 4784920
什么是DOI,文献DOI怎么找? 2554933
邀请新用户注册赠送积分活动 1516382
关于科研通互助平台的介绍 1476748