Brain tumor segmentation by cascaded multiscale multitask learning framework based on feature aggregation

计算机科学 分割 人工智能 模式识别(心理学) 多任务学习 特征(语言学) 编码器 深度学习 机器学习 任务(项目管理) 语言学 操作系统 哲学 经济 管理
作者
Zahra Sobhaninia,Nader Karimi,Pejman Khadivi,Shadrokh Samavi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104834-104834 被引量:10
标识
DOI:10.1016/j.bspc.2023.104834
摘要

Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death. Diagnosis and evaluation of brain tumors in the early stages increase the probability of successful treatment. However, the complexity and variety of tumors, shapes, and locations make their segmentation and classification complex. Numerous researchers have proposed brain tumor segmentation and classification methods in this regard. This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection. Eventually, a network based on a multitask learning approach is proposed. The proposed network, called Multiscale Cascaded Multitask Network, is based on a multitask learning approach containing segmentation and classification tasks. A multiscale approach and cascade approach in layers of encoder and decoder have been applied to improve segmentation accuracy in the proposed network. In addition, to increase the classification accuracy, a feature aggregation module has been introduced that integrates different levels of features to better tumor type classification. Simultaneously learning the two tasks of segmentation and classification, along with applying the mentioned approaches, has improved the results in both tasks. Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art. Our proposed method has reached 96.27 and 95.88 for DCS and mean IoU, respectively, for segmentation and 97.988 accuracies for classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助木木采纳,获得10
2秒前
2秒前
3秒前
4秒前
罗攀发布了新的文献求助10
4秒前
4秒前
4秒前
luo完成签到,获得积分10
6秒前
羽安发布了新的文献求助10
6秒前
科研通AI2S应助lyy采纳,获得10
6秒前
7秒前
7秒前
laber应助零可林采纳,获得50
9秒前
9秒前
lcc发布了新的文献求助10
9秒前
9秒前
tiffany发布了新的文献求助10
10秒前
木木完成签到,获得积分10
10秒前
10秒前
11秒前
丰富的不惜完成签到,获得积分10
11秒前
聪明的你完成签到,获得积分10
11秒前
11秒前
银鱼在游发布了新的文献求助10
12秒前
comz完成签到,获得积分10
12秒前
lalatrouble完成签到,获得积分10
12秒前
小薛发布了新的文献求助10
13秒前
mirror完成签到,获得积分10
14秒前
Patience发布了新的文献求助30
14秒前
阿米发布了新的文献求助10
15秒前
希望天下0贩的0应助lcc采纳,获得10
15秒前
16秒前
16秒前
打打应助JLLLLLLLL采纳,获得10
16秒前
y13333完成签到,获得积分10
17秒前
17秒前
bhkwxdxy完成签到,获得积分10
19秒前
19秒前
不安海蓝完成签到,获得积分10
19秒前
大个应助Dskelf采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858