亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Practical and Ethical Challenges of Large Language Models in Education: A Systematic Scoping Review

分级(工程) 计算机科学 工程伦理学 能力(人力资源) 知识管理 数据科学 心理学 工程类 社会心理学 土木工程
作者
Lixiang Yan,Lele Sha,Linxuan Zhao,Yuheng Li,Roberto Martínez‐Maldonado,Guanliang Chen,Xinyu Li,Yueqiao Jin,Dragan Gǎsević
出处
期刊:Cornell University - arXiv 被引量:17
标识
DOI:10.48550/arxiv.2303.13379
摘要

Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (e.g., question generation, feedback provision, and essay grading), there are concerns regarding the practicality and ethicality of these innovations. Such concerns may hinder future research and the adoption of LLMs-based innovations in authentic educational contexts. To address this, we conducted a systematic scoping review of 118 peer-reviewed papers published since 2017 to pinpoint the current state of research on using LLMs to automate and support educational tasks. The findings revealed 53 use cases for LLMs in automating education tasks, categorised into nine main categories: profiling/labelling, detection, grading, teaching support, prediction, knowledge representation, feedback, content generation, and recommendation. Additionally, we also identified several practical and ethical challenges, including low technological readiness, lack of replicability and transparency, and insufficient privacy and beneficence considerations. The findings were summarised into three recommendations for future studies, including updating existing innovations with state-of-the-art models (e.g., GPT-3/4), embracing the initiative of open-sourcing models/systems, and adopting a human-centred approach throughout the developmental process. As the intersection of AI and education is continuously evolving, the findings of this study can serve as an essential reference point for researchers, allowing them to leverage the strengths, learn from the limitations, and uncover potential research opportunities enabled by ChatGPT and other generative AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
KKIII发布了新的文献求助10
8秒前
bkagyin应助冷艳的立果采纳,获得10
14秒前
Yam呀完成签到 ,获得积分10
42秒前
汉堡包应助虚幻的不评采纳,获得10
44秒前
1分钟前
404NotFOUND应助科研通管家采纳,获得10
1分钟前
饭饭发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ava应助饭饭采纳,获得10
1分钟前
xiao完成签到 ,获得积分10
1分钟前
yoyo发布了新的文献求助20
1分钟前
1分钟前
上官若男应助cassie采纳,获得10
1分钟前
FashionBoy应助Ade阿德采纳,获得10
1分钟前
1分钟前
1分钟前
暖暖发布了新的文献求助10
1分钟前
Ade阿德发布了新的文献求助10
1分钟前
我是老大应助iorpi采纳,获得10
1分钟前
星辰大海应助hxd采纳,获得10
1分钟前
结实白容发布了新的文献求助20
2分钟前
zyx完成签到,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
萨尔莫斯完成签到,获得积分20
2分钟前
科研通AI40应助虚幻的不评采纳,获得10
2分钟前
乐乐应助平常远山采纳,获得10
2分钟前
liuqiuchina完成签到,获得积分10
2分钟前
夜阑完成签到,获得积分10
2分钟前
朴素亦绿完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助VDC采纳,获得10
2分钟前
2分钟前
hxd发布了新的文献求助10
2分钟前
浦肯野举报否定之否定求助涉嫌违规
2分钟前
2分钟前
2分钟前
2分钟前
VDC发布了新的文献求助10
2分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088179
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460