RIS Subarray Optimization With Reinforcement Learning for Green Symbiotic Communications in Internet of Things

计算机科学 强化学习 马尔可夫决策过程 高效能源利用 波束赋形 数学优化 无线 光谱效率 分布式计算 电子工程 电信 马尔可夫过程 人工智能 电气工程 工程类 数学 统计
作者
Tiantian Zhang,Pinyi Ren,Dongyang Xu,Zhanyi Ren
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (22): 19454-19465 被引量:1
标识
DOI:10.1109/jiot.2023.3264286
摘要

Symbiotic communications have been deemed as a critical technology for Internet of things (IoT) communications owing to its high spectrum and energy efficiency. Reconfigurable intelligent surface (RIS), which can tune wireless transmission channels by manipulating incident waves through the corresponding electromagnetic elements, is a promising enabler of various symbiotic communications scenarios in IoT. However, when the full electromagnetic elements of RIS are activated, system capacity will be improved and energy efficiency will be reduced inevitably, also with undesirable power consumption. To address this issue, an intelligent dynamic subarray RIS framework based on deep reinforcement learning (DRL) has been proposed. The key idea is to divide RIS electromagnetic elements into several groups and optimize power amplifier factor, independent phase shifts to improve the system energy efficiency under the premise of user’s basic requirements. In particular, we formulate a hybrid optimization problem of RIS subarray partition and beamforming to maximize system energy efficiency. It can be proved that this hybrid optimization is a mixed non-convex integer programming problem. To solve this issue, we proposed a comprehensive DRL framework including two parts, i.e., (1) a Markov decision process (MDP) to model the subarray partition design, amplitude and phase shifts of RIS, and (2) an active RIS subarray optimization scheme based on deep deterministic policy gradient. Numerical results have demonstrated that, compared with the conventional fully-connected RIS, the system energy efficiency can be significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善良冷松发布了新的文献求助10
刚刚
2秒前
在水一方应助一定行采纳,获得10
3秒前
3秒前
3秒前
NexusExplorer应助快乐一江采纳,获得10
4秒前
4秒前
科研通AI5应助Lcccccc采纳,获得10
4秒前
在水一方应助杰2580采纳,获得10
7秒前
幸福大白发布了新的文献求助30
7秒前
Jasmine发布了新的文献求助10
7秒前
8秒前
善良冷松完成签到,获得积分10
8秒前
8秒前
善学以致用应助fengliurencai采纳,获得10
9秒前
个别完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
sihanzhiyu完成签到,获得积分20
12秒前
12秒前
wdy111应助ASZXDW采纳,获得20
14秒前
14秒前
wsj发布了新的文献求助10
14秒前
旧梦发布了新的文献求助10
14秒前
东晓发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
从容的鲜花完成签到,获得积分10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174