RIS Subarray Optimization With Reinforcement Learning for Green Symbiotic Communications in Internet of Things

计算机科学 强化学习 马尔可夫决策过程 高效能源利用 波束赋形 数学优化 无线 光谱效率 分布式计算 电子工程 电信 马尔可夫过程 人工智能 电气工程 工程类 数学 统计
作者
Tiantian Zhang,Pinyi Ren,Dongyang Xu,Zhanyi Ren
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (22): 19454-19465 被引量:1
标识
DOI:10.1109/jiot.2023.3264286
摘要

Symbiotic communications have been deemed as a critical technology for Internet of things (IoT) communications owing to its high spectrum and energy efficiency. Reconfigurable intelligent surface (RIS), which can tune wireless transmission channels by manipulating incident waves through the corresponding electromagnetic elements, is a promising enabler of various symbiotic communications scenarios in IoT. However, when the full electromagnetic elements of RIS are activated, system capacity will be improved and energy efficiency will be reduced inevitably, also with undesirable power consumption. To address this issue, an intelligent dynamic subarray RIS framework based on deep reinforcement learning (DRL) has been proposed. The key idea is to divide RIS electromagnetic elements into several groups and optimize power amplifier factor, independent phase shifts to improve the system energy efficiency under the premise of user’s basic requirements. In particular, we formulate a hybrid optimization problem of RIS subarray partition and beamforming to maximize system energy efficiency. It can be proved that this hybrid optimization is a mixed non-convex integer programming problem. To solve this issue, we proposed a comprehensive DRL framework including two parts, i.e., (1) a Markov decision process (MDP) to model the subarray partition design, amplitude and phase shifts of RIS, and (2) an active RIS subarray optimization scheme based on deep deterministic policy gradient. Numerical results have demonstrated that, compared with the conventional fully-connected RIS, the system energy efficiency can be significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同学完成签到,获得积分10
刚刚
李爱国应助啊啊啊啊采纳,获得10
1秒前
SciGPT应助爱听歌的青筠采纳,获得10
1秒前
1秒前
黄金城发布了新的文献求助10
2秒前
3秒前
3秒前
英俊的铭应助西瓜珺采纳,获得30
3秒前
李盛男发布了新的文献求助10
4秒前
4秒前
ZZQ完成签到 ,获得积分10
4秒前
6秒前
6秒前
霍小美完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI2S应助羊水彤采纳,获得10
7秒前
Owen应助一一一一采纳,获得10
7秒前
7秒前
8秒前
9秒前
爱听歌的青筠完成签到,获得积分10
9秒前
dnn发布了新的文献求助10
9秒前
l895365038发布了新的文献求助10
10秒前
10秒前
王雄完成签到,获得积分20
11秒前
OCT发布了新的文献求助10
11秒前
12秒前
12秒前
王肖发布了新的文献求助10
12秒前
13秒前
烟花应助terryok采纳,获得30
14秒前
吱吱吱发布了新的文献求助10
14秒前
17秒前
cc发布了新的文献求助10
17秒前
18秒前
xie完成签到,获得积分10
19秒前
dnn完成签到,获得积分20
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907817
求助须知:如何正确求助?哪些是违规求助? 4184682
关于积分的说明 12995045
捐赠科研通 3951176
什么是DOI,文献DOI怎么找? 2166855
邀请新用户注册赠送积分活动 1185434
关于科研通互助平台的介绍 1091895