RIS Subarray Optimization With Reinforcement Learning for Green Symbiotic Communications in Internet of Things

计算机科学 强化学习 马尔可夫决策过程 高效能源利用 波束赋形 数学优化 无线 光谱效率 分布式计算 电子工程 电信 马尔可夫过程 人工智能 电气工程 工程类 数学 统计
作者
Tiantian Zhang,Pinyi Ren,Dongyang Xu,Zhanyi Ren
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (22): 19454-19465 被引量:1
标识
DOI:10.1109/jiot.2023.3264286
摘要

Symbiotic communications have been deemed as a critical technology for Internet of things (IoT) communications owing to its high spectrum and energy efficiency. Reconfigurable intelligent surface (RIS), which can tune wireless transmission channels by manipulating incident waves through the corresponding electromagnetic elements, is a promising enabler of various symbiotic communications scenarios in IoT. However, when the full electromagnetic elements of RIS are activated, system capacity will be improved and energy efficiency will be reduced inevitably, also with undesirable power consumption. To address this issue, an intelligent dynamic subarray RIS framework based on deep reinforcement learning (DRL) has been proposed. The key idea is to divide RIS electromagnetic elements into several groups and optimize power amplifier factor, independent phase shifts to improve the system energy efficiency under the premise of user’s basic requirements. In particular, we formulate a hybrid optimization problem of RIS subarray partition and beamforming to maximize system energy efficiency. It can be proved that this hybrid optimization is a mixed non-convex integer programming problem. To solve this issue, we proposed a comprehensive DRL framework including two parts, i.e., (1) a Markov decision process (MDP) to model the subarray partition design, amplitude and phase shifts of RIS, and (2) an active RIS subarray optimization scheme based on deep deterministic policy gradient. Numerical results have demonstrated that, compared with the conventional fully-connected RIS, the system energy efficiency can be significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
74发布了新的文献求助10
1秒前
anna1992完成签到 ,获得积分10
3秒前
巧可脆脆完成签到,获得积分10
4秒前
九卫发布了新的文献求助20
6秒前
7秒前
8秒前
10秒前
ding应助桃之夭夭采纳,获得10
11秒前
Bobobobobo122发布了新的文献求助10
12秒前
紫羽发布了新的文献求助10
15秒前
英俊的铭应助74采纳,获得10
16秒前
科研通AI2S应助songyl采纳,获得10
18秒前
22秒前
22秒前
JamesPei应助舒克采纳,获得10
22秒前
22秒前
问你有没有发挥完成签到,获得积分10
23秒前
Bobobobobo122完成签到,获得积分10
24秒前
24秒前
九卫完成签到,获得积分10
24秒前
不懈奋进应助晚亭采纳,获得30
25秒前
迷篱发布了新的文献求助10
27秒前
材1发布了新的文献求助50
28秒前
添酱发布了新的文献求助10
28秒前
张张完成签到,获得积分20
29秒前
30秒前
31秒前
桐桐应助学术小白采纳,获得10
32秒前
iuyol完成签到,获得积分10
33秒前
34秒前
大力的新蕾完成签到,获得积分10
34秒前
迷篱完成签到,获得积分10
35秒前
36秒前
36秒前
舒克发布了新的文献求助10
36秒前
37秒前
丸子鱼完成签到 ,获得积分10
37秒前
一一应助紫羽采纳,获得10
38秒前
亚克西发布了新的文献求助10
38秒前
爱吃土豆的小狸猫完成签到,获得积分10
40秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212387
求助须知:如何正确求助?哪些是违规求助? 2861232
关于积分的说明 8127731
捐赠科研通 2527172
什么是DOI,文献DOI怎么找? 1360782
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615664