卷积神经网络
髋臼
估计
人工神经网络
计算机科学
人工智能
特征(语言学)
特征提取
平均绝对误差
曲面(拓扑)
模式识别(心理学)
相关系数
统计
均方误差
机器学习
数学
工程类
解剖
几何学
医学
语言学
哲学
系统工程
作者
Zdeněk Buk,Anežka Kotěrová,Jaroslav Brůžek,Jana Velemínská
标识
DOI:10.1109/informatics57926.2022.10083446
摘要
The paper presents an age-at-death estimation model based on artificial neural networks with no explicit feature extraction, thus, completely eliminating the need for expert knowledge. As input information, it uses a 3D surface scan of the acetabulum, and as the output, it provides an estimated age-at-death. This study is based on a heterogeneous multipopulational database composed of 943 adult ossa coxae coming from 380 males and 327 females. The mean absolute error of our model for this database is about 12.4 years. The correlation coefficient between actual and estimated age-at-death is 0.6. This clearly demonstrates that our model captures age-related morphological changes of the shape and surface of the acetabulum.
科研通智能强力驱动
Strongly Powered by AbleSci AI