Model-informed deep learning strategy with vision measurement for damage identification of truss structures

桁架 流离失所(心理学) 鉴定(生物学) 人工智能 卷积神经网络 特征(语言学) 过程(计算) 计算机科学 结构工程 模式识别(心理学) 工程类 算法 心理学 机器学习 生物 植物 语言学 哲学 心理治疗师 操作系统
作者
Jiangpeng Shu,Congguang Zhang,Xiyuan Chen,Yanbo Niu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110327-110327 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110327
摘要

Structural damage identification approaches can be divided into two categories, i.e. data-driven approaches via statistical pattern recognition and model-based approaches via finite element (FE) model updating. These two approaches have their own merits, and their main shortcomings can be remedied by each other’s merits. Therefore, this study proposed a deep learning-based damage identification strategy involving both data-driven and model-based approaches, termed as model-informed deep learning (MIDL)-based strategy. This strategy first proposes a vision-based displacement estimation approach to extract structural displacement responses from video data. This approach reduces the displacement drift induced by conventional optical flow approaches and improves the tracking accuracy of feature points. Then, a calibrated FE model is built to construct data sets with different damage levels via FE model updating and time-history analysis. Following this, a one-dimensional convolutional neural network (1D CNN) is established to detect and localize structural damage by using direct displacement responses. Finally, FE model updating is performed again to quantify structural damage level with constrained targets. A truss structure is further used to evaluate the accuracy of the proposed strategy experimentally. Results illustrate that the proposed MIDL strategy, which uses time series to localize the structural damage, achieves a global location accuracy of 86.09% and avoids the feature extraction process. Meanwhile, with the known damage location, the efficiency and accuracy of structural damage quantification via rerunning model updating can also be significantly improved. In addition, the displacements estimated by the proposed approach have a good match with ground truth values with error standard deviations of less than 0.3 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
Orange应助图图采纳,获得10
3秒前
3秒前
李健应助小世界123采纳,获得10
3秒前
俏皮的冷松完成签到,获得积分10
3秒前
5秒前
灌灌灌灌v发布了新的文献求助10
6秒前
6秒前
不配.应助sunyexuan采纳,获得10
7秒前
7秒前
小二郎应助qxx采纳,获得10
8秒前
LIUDAN完成签到,获得积分20
8秒前
二指弹完成签到 ,获得积分10
10秒前
科研小白发布了新的文献求助20
10秒前
11秒前
12秒前
ccc发布了新的文献求助10
12秒前
LIUDAN发布了新的文献求助10
13秒前
整齐水杯发布了新的文献求助30
13秒前
13秒前
13秒前
15秒前
16秒前
zzmAZUSA关注了科研通微信公众号
17秒前
heart发布了新的文献求助30
17秒前
feng完成签到,获得积分10
17秒前
科目三应助Sharyn227采纳,获得10
18秒前
LOST完成签到 ,获得积分10
18秒前
图图发布了新的文献求助10
18秒前
18秒前
19秒前
科研通AI2S应助萝卜炖土豆采纳,获得10
19秒前
唐瑾瑜完成签到,获得积分10
20秒前
23秒前
feng发布了新的文献求助10
23秒前
23秒前
5wei完成签到,获得积分10
26秒前
Singularity发布了新的文献求助10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302