Model-informed deep learning strategy with vision measurement for damage identification of truss structures

桁架 流离失所(心理学) 鉴定(生物学) 人工智能 卷积神经网络 特征(语言学) 过程(计算) 计算机科学 结构工程 模式识别(心理学) 工程类 算法 心理学 机器学习 生物 植物 语言学 哲学 心理治疗师 操作系统
作者
Jiangpeng Shu,Congguang Zhang,Xiyuan Chen,Yanbo Niu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110327-110327 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110327
摘要

Structural damage identification approaches can be divided into two categories, i.e. data-driven approaches via statistical pattern recognition and model-based approaches via finite element (FE) model updating. These two approaches have their own merits, and their main shortcomings can be remedied by each other’s merits. Therefore, this study proposed a deep learning-based damage identification strategy involving both data-driven and model-based approaches, termed as model-informed deep learning (MIDL)-based strategy. This strategy first proposes a vision-based displacement estimation approach to extract structural displacement responses from video data. This approach reduces the displacement drift induced by conventional optical flow approaches and improves the tracking accuracy of feature points. Then, a calibrated FE model is built to construct data sets with different damage levels via FE model updating and time-history analysis. Following this, a one-dimensional convolutional neural network (1D CNN) is established to detect and localize structural damage by using direct displacement responses. Finally, FE model updating is performed again to quantify structural damage level with constrained targets. A truss structure is further used to evaluate the accuracy of the proposed strategy experimentally. Results illustrate that the proposed MIDL strategy, which uses time series to localize the structural damage, achieves a global location accuracy of 86.09% and avoids the feature extraction process. Meanwhile, with the known damage location, the efficiency and accuracy of structural damage quantification via rerunning model updating can also be significantly improved. In addition, the displacements estimated by the proposed approach have a good match with ground truth values with error standard deviations of less than 0.3 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神啊救救我吧完成签到,获得积分10
1秒前
顾矜应助尺八采纳,获得10
1秒前
2秒前
完美世界应助小璐采纳,获得10
2秒前
华仔应助沉默的罡采纳,获得10
3秒前
可耐的思远完成签到,获得积分10
3秒前
3秒前
屿顾完成签到,获得积分10
3秒前
huanir99发布了新的文献求助30
4秒前
4秒前
白鸽完成签到,获得积分20
4秒前
缓慢的可乐完成签到,获得积分10
5秒前
枫叶发布了新的文献求助30
5秒前
5秒前
GuAte完成签到,获得积分10
6秒前
6秒前
要发财关注了科研通微信公众号
7秒前
7秒前
曹能豪完成签到,获得积分10
7秒前
badada完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
dgd发布了新的文献求助10
8秒前
8秒前
9秒前
睡到自然醒完成签到 ,获得积分10
9秒前
aaron完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
momo发布了新的文献求助10
10秒前
回眸是明眸完成签到,获得积分10
11秒前
iris2333发布了新的文献求助10
12秒前
Gin发布了新的文献求助10
12秒前
taotie完成签到,获得积分10
12秒前
12秒前
13秒前
不狗不吹完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530