Model-informed deep learning strategy with vision measurement for damage identification of truss structures

桁架 流离失所(心理学) 鉴定(生物学) 人工智能 卷积神经网络 特征(语言学) 过程(计算) 计算机科学 结构工程 模式识别(心理学) 工程类 算法 心理学 机器学习 生物 哲学 操作系统 植物 心理治疗师 语言学
作者
Jiangpeng Shu,Congguang Zhang,Xiyuan Chen,Yanbo Niu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110327-110327 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110327
摘要

Structural damage identification approaches can be divided into two categories, i.e. data-driven approaches via statistical pattern recognition and model-based approaches via finite element (FE) model updating. These two approaches have their own merits, and their main shortcomings can be remedied by each other’s merits. Therefore, this study proposed a deep learning-based damage identification strategy involving both data-driven and model-based approaches, termed as model-informed deep learning (MIDL)-based strategy. This strategy first proposes a vision-based displacement estimation approach to extract structural displacement responses from video data. This approach reduces the displacement drift induced by conventional optical flow approaches and improves the tracking accuracy of feature points. Then, a calibrated FE model is built to construct data sets with different damage levels via FE model updating and time-history analysis. Following this, a one-dimensional convolutional neural network (1D CNN) is established to detect and localize structural damage by using direct displacement responses. Finally, FE model updating is performed again to quantify structural damage level with constrained targets. A truss structure is further used to evaluate the accuracy of the proposed strategy experimentally. Results illustrate that the proposed MIDL strategy, which uses time series to localize the structural damage, achieves a global location accuracy of 86.09% and avoids the feature extraction process. Meanwhile, with the known damage location, the efficiency and accuracy of structural damage quantification via rerunning model updating can also be significantly improved. In addition, the displacements estimated by the proposed approach have a good match with ground truth values with error standard deviations of less than 0.3 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助WEAWEA采纳,获得10
1秒前
1秒前
2秒前
科研通AI2S应助如意的冰双采纳,获得10
3秒前
能干的问晴完成签到,获得积分10
4秒前
miemie66发布了新的文献求助10
4秒前
香芋完成签到 ,获得积分10
4秒前
nihao发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
韩野发布了新的文献求助10
9秒前
山海完成签到,获得积分10
9秒前
penpen发布了新的文献求助10
9秒前
10秒前
张芃尧完成签到,获得积分20
11秒前
天天快乐应助CHEN采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
SciGPT应助hearz采纳,获得10
13秒前
13秒前
孙元应助zzz采纳,获得10
14秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
英姑应助Vizz采纳,获得10
15秒前
起个名真难完成签到,获得积分10
15秒前
幻影完成签到 ,获得积分10
15秒前
ayintree完成签到,获得积分10
16秒前
16秒前
小蘑菇应助mm采纳,获得10
16秒前
Nan发布了新的文献求助200
16秒前
18秒前
打工人发布了新的文献求助10
18秒前
张芃尧发布了新的文献求助10
19秒前
Franco发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233