Model-informed deep learning strategy with vision measurement for damage identification of truss structures

桁架 流离失所(心理学) 鉴定(生物学) 人工智能 卷积神经网络 特征(语言学) 过程(计算) 计算机科学 结构工程 模式识别(心理学) 工程类 算法 心理学 机器学习 生物 植物 语言学 哲学 心理治疗师 操作系统
作者
Jiangpeng Shu,Congguang Zhang,Xiyuan Chen,Yanbo Niu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110327-110327 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110327
摘要

Structural damage identification approaches can be divided into two categories, i.e. data-driven approaches via statistical pattern recognition and model-based approaches via finite element (FE) model updating. These two approaches have their own merits, and their main shortcomings can be remedied by each other’s merits. Therefore, this study proposed a deep learning-based damage identification strategy involving both data-driven and model-based approaches, termed as model-informed deep learning (MIDL)-based strategy. This strategy first proposes a vision-based displacement estimation approach to extract structural displacement responses from video data. This approach reduces the displacement drift induced by conventional optical flow approaches and improves the tracking accuracy of feature points. Then, a calibrated FE model is built to construct data sets with different damage levels via FE model updating and time-history analysis. Following this, a one-dimensional convolutional neural network (1D CNN) is established to detect and localize structural damage by using direct displacement responses. Finally, FE model updating is performed again to quantify structural damage level with constrained targets. A truss structure is further used to evaluate the accuracy of the proposed strategy experimentally. Results illustrate that the proposed MIDL strategy, which uses time series to localize the structural damage, achieves a global location accuracy of 86.09% and avoids the feature extraction process. Meanwhile, with the known damage location, the efficiency and accuracy of structural damage quantification via rerunning model updating can also be significantly improved. In addition, the displacements estimated by the proposed approach have a good match with ground truth values with error standard deviations of less than 0.3 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
木木发布了新的文献求助10
1秒前
1秒前
jzy发布了新的文献求助10
1秒前
细心新之发布了新的文献求助10
1秒前
2秒前
高贵的若烟关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
CodeCraft应助小叶子采纳,获得10
5秒前
zhu完成签到,获得积分10
5秒前
haha9haha完成签到,获得积分10
5秒前
嘿嘿发布了新的文献求助10
5秒前
6秒前
刘子田发布了新的文献求助10
6秒前
kong溪1002发布了新的文献求助10
6秒前
6秒前
6秒前
Feiyan完成签到,获得积分10
6秒前
锤锤发布了新的文献求助10
7秒前
7秒前
123123完成签到,获得积分10
7秒前
7秒前
言言言言完成签到,获得积分20
7秒前
7秒前
核动力驴发布了新的文献求助10
8秒前
8秒前
胡白发布了新的文献求助10
8秒前
Ava应助ln采纳,获得10
8秒前
木木完成签到,获得积分20
8秒前
自渡完成签到 ,获得积分0
9秒前
FashionBoy应助1473057467采纳,获得10
9秒前
李等等发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647671
求助须知:如何正确求助?哪些是违规求助? 4774049
关于积分的说明 15040794
捐赠科研通 4806561
什么是DOI,文献DOI怎么找? 2570314
邀请新用户注册赠送积分活动 1527131
关于科研通互助平台的介绍 1486211