Model-informed deep learning strategy with vision measurement for damage identification of truss structures

桁架 流离失所(心理学) 鉴定(生物学) 人工智能 卷积神经网络 特征(语言学) 过程(计算) 计算机科学 结构工程 模式识别(心理学) 工程类 算法 心理学 机器学习 生物 哲学 操作系统 植物 心理治疗师 语言学
作者
Jiangpeng Shu,Congguang Zhang,Xiyuan Chen,Yanbo Niu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:196: 110327-110327 被引量:16
标识
DOI:10.1016/j.ymssp.2023.110327
摘要

Structural damage identification approaches can be divided into two categories, i.e. data-driven approaches via statistical pattern recognition and model-based approaches via finite element (FE) model updating. These two approaches have their own merits, and their main shortcomings can be remedied by each other’s merits. Therefore, this study proposed a deep learning-based damage identification strategy involving both data-driven and model-based approaches, termed as model-informed deep learning (MIDL)-based strategy. This strategy first proposes a vision-based displacement estimation approach to extract structural displacement responses from video data. This approach reduces the displacement drift induced by conventional optical flow approaches and improves the tracking accuracy of feature points. Then, a calibrated FE model is built to construct data sets with different damage levels via FE model updating and time-history analysis. Following this, a one-dimensional convolutional neural network (1D CNN) is established to detect and localize structural damage by using direct displacement responses. Finally, FE model updating is performed again to quantify structural damage level with constrained targets. A truss structure is further used to evaluate the accuracy of the proposed strategy experimentally. Results illustrate that the proposed MIDL strategy, which uses time series to localize the structural damage, achieves a global location accuracy of 86.09% and avoids the feature extraction process. Meanwhile, with the known damage location, the efficiency and accuracy of structural damage quantification via rerunning model updating can also be significantly improved. In addition, the displacements estimated by the proposed approach have a good match with ground truth values with error standard deviations of less than 0.3 mm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liao_duoduo采纳,获得10
2秒前
种草匠完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
LaTeXer应助科研通管家采纳,获得50
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
LaTeXer应助科研通管家采纳,获得50
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
易点邦应助科研通管家采纳,获得100
5秒前
wanci应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
xzy998应助日笙采纳,获得10
8秒前
孙国扬完成签到 ,获得积分10
8秒前
酷波er应助留胡子的迎梦采纳,获得10
10秒前
10秒前
一一发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
huhuhu发布了新的文献求助10
12秒前
LYD发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601