清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PPFchain: A novel framework privacy-preserving blockchain-based federated learning method for sensor networks

计算机科学 块链 建筑 可追溯性 无线传感器网络 大数据 云计算 信息隐私 计算机安全 分布式计算 嵌入式系统 计算机网络 数据挖掘 艺术 软件工程 视觉艺术 操作系统
作者
Bora Buğra Sezer,Hasret Turkmen,Urfat Nurıyev
出处
期刊:Internet of things [Elsevier]
卷期号:22: 100781-100781 被引量:33
标识
DOI:10.1016/j.iot.2023.100781
摘要

Internet of Things (IoT) has been widely used in many smart applications such as smart cities, smart agriculture, healthcare, industry, etc. In addition, the importance of IoT-based architectures has increased with the emergence of innovative technologies such as 5G networks and quantum computing. Electrochemical sensors (ECS) have recently been used in IoT-based architectures thanks to their easy integration into smart systems in many fields such as pharmaceutical, food, medical diagnosis, clinical, genetic analysis, wearable, forensic identification, and monitoring of environmental variables. However, Although IoT-based systems have ensured the availability of sensor data in traditional architecture, there are many challenges, such as low latency, availability, real-time data traceability, and security. In addition, new challenges regarding security and privacy have emerged in the system as the ever-growing smart connected IoT devices generate a significant amount of heterogeneous data. Given these challenges, in this paper, we propose PPFchain, a new federated learning-enabled blockchain-based framework to ensure the security and privacy of sensor-IoT-based architectures using sampled ECS data. PPFchain has a lightweight, low-cost, high-performance architecture in the IoT-based blockchain network. In the architecture, we used the federated model and cryptographic primitives for user and data privacy in off-chain fog nodes considering performance. Moreover, we compared with traditional blockchain models using various performance metrics for system performance in a distributed architecture, such as an event and storage-based smart contract. In addition, the results show that the PPFchain provides accuracy, efficiency, and enhanced security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
nanyuan123完成签到,获得积分10
40秒前
黄黄黄完成签到,获得积分10
59秒前
xfy完成签到,获得积分10
1分钟前
sci完成签到 ,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助胖哥采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
胖哥发布了新的文献求助10
1分钟前
稻子完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
2分钟前
2分钟前
serena0_0完成签到,获得积分10
2分钟前
lihh发布了新的文献求助10
2分钟前
Vivian完成签到 ,获得积分10
2分钟前
焚心结完成签到 ,获得积分0
2分钟前
应夏山完成签到 ,获得积分10
3分钟前
herpes完成签到 ,获得积分10
3分钟前
3分钟前
Willing完成签到,获得积分10
3分钟前
x银河里完成签到 ,获得积分10
3分钟前
whykm91完成签到 ,获得积分10
3分钟前
Willing发布了新的文献求助10
3分钟前
赫连涵柏完成签到,获得积分0
3分钟前
duxh123完成签到 ,获得积分10
3分钟前
姝惠儿完成签到 ,获得积分10
4分钟前
bo完成签到 ,获得积分10
4分钟前
jyy关闭了jyy文献求助
4分钟前
搜集达人应助胖哥采纳,获得10
4分钟前
wang完成签到,获得积分10
5分钟前
67完成签到 ,获得积分10
5分钟前
lingling完成签到 ,获得积分10
5分钟前
今后应助珍珠i宝宝采纳,获得10
5分钟前
科研通AI5应助lihh采纳,获得10
5分钟前
脑洞疼应助lihh采纳,获得10
5分钟前
Owen应助lihh采纳,获得10
5分钟前
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484484
求助须知:如何正确求助?哪些是违规求助? 3073487
关于积分的说明 9131089
捐赠科研通 2765165
什么是DOI,文献DOI怎么找? 1517659
邀请新用户注册赠送积分活动 702204
科研通“疑难数据库(出版商)”最低求助积分说明 701166