Abstract Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen‐bonded cyclic dinuclear Ag I complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2–13. The seemingly rigid adsorbent shows a pore‐opening or nonporous‐to‐porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co‐adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single‐crystal X‐ray diffraction and computational simulations reveal that a trivial guest‐induced structural transformation plays a critical role.