Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy

主成分分析 偏最小二乘回归 均方误差 人工神经网络 多元自适应回归样条 火星探测计划 主成分回归 校准 数学 生物系统 人工智能 模式识别(心理学) 统计 回归 计算机科学 非参数回归 天文 生物 物理
作者
Mina Sadrara,Mohammadreza Khanmohammadi Khorrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:300: 122944-122944 被引量:1
标识
DOI:10.1016/j.saa.2023.122944
摘要

Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mm发布了新的文献求助10
1秒前
3秒前
微笑淡忘发布了新的文献求助10
3秒前
小文殊完成签到 ,获得积分10
3秒前
3秒前
4秒前
汤汤公主完成签到,获得积分10
5秒前
Micale发布了新的文献求助10
5秒前
5秒前
5秒前
研友_VZG7GZ应助球球采纳,获得10
6秒前
Yhcir完成签到,获得积分10
6秒前
quanbin完成签到 ,获得积分10
7秒前
Raymond D完成签到,获得积分10
7秒前
义气的三德完成签到,获得积分10
7秒前
一天吃瓜25h完成签到 ,获得积分10
8秒前
jiangjinxiang发布了新的文献求助10
9秒前
人间烟火发布了新的文献求助10
10秒前
happyboy2008发布了新的文献求助20
10秒前
10秒前
11秒前
11秒前
selfevidbet完成签到,获得积分10
12秒前
12秒前
13秒前
无所屌谓发布了新的文献求助10
14秒前
锅巴完成签到 ,获得积分10
14秒前
烁果累累完成签到 ,获得积分10
14秒前
Taffy发布了新的文献求助10
15秒前
Susie大可完成签到,获得积分10
16秒前
球球发布了新的文献求助10
17秒前
鉴定为学计算学的完成签到,获得积分10
18秒前
花花发布了新的文献求助10
20秒前
千叶发布了新的文献求助10
20秒前
烟花应助黑咖喱采纳,获得10
20秒前
萌3690完成签到,获得积分10
21秒前
JamesPei应助清汤不加盐采纳,获得10
21秒前
zhaoaotao完成签到,获得积分10
22秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760