Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy

主成分分析 偏最小二乘回归 均方误差 人工神经网络 多元自适应回归样条 火星探测计划 主成分回归 校准 数学 生物系统 人工智能 模式识别(心理学) 统计 回归 计算机科学 非参数回归 天文 生物 物理
作者
Mina Sadrara,Mohammadreza Khanmohammadi Khorrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:300: 122944-122944 被引量:1
标识
DOI:10.1016/j.saa.2023.122944
摘要

Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Res_M完成签到,获得积分10
刚刚
ding应助aaaaaa采纳,获得10
1秒前
LIYUAN发布了新的文献求助10
1秒前
3秒前
斯文败类应助dart1023采纳,获得10
3秒前
彭于晏应助念姬采纳,获得10
4秒前
695完成签到,获得积分10
5秒前
energyharvester完成签到 ,获得积分10
6秒前
6秒前
8秒前
调皮的又菱完成签到,获得积分10
8秒前
10秒前
苹果王子6699完成签到 ,获得积分10
11秒前
CCC完成签到,获得积分10
11秒前
煦白完成签到,获得积分10
11秒前
12秒前
Lyric完成签到,获得积分10
14秒前
CipherSage应助儒雅的夏山采纳,获得10
14秒前
酷波er应助健壮的语雪采纳,获得10
15秒前
老狗完成签到 ,获得积分10
15秒前
Final发布了新的文献求助10
17秒前
shuiliuyuzai完成签到,获得积分10
18秒前
18秒前
18秒前
bkagyin应助hahahaweiwei采纳,获得10
19秒前
大1完成签到,获得积分10
20秒前
小王完成签到 ,获得积分10
20秒前
22秒前
22秒前
我先睡了发布了新的文献求助10
23秒前
ZH发布了新的文献求助10
23秒前
Final完成签到,获得积分20
24秒前
ilk666完成签到,获得积分10
25秒前
赵十一完成签到,获得积分10
25秒前
Ava应助nki采纳,获得10
25秒前
26秒前
26秒前
27秒前
27秒前
shdfio发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432