Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy

主成分分析 偏最小二乘回归 均方误差 人工神经网络 多元自适应回归样条 火星探测计划 主成分回归 校准 数学 生物系统 人工智能 模式识别(心理学) 统计 回归 计算机科学 非参数回归 天文 生物 物理
作者
Mina Sadrara,Mohammadreza Khanmohammadi Khorrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:300: 122944-122944 被引量:1
标识
DOI:10.1016/j.saa.2023.122944
摘要

Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许多年以后完成签到,获得积分10
1秒前
1秒前
清脆幻枫发布了新的文献求助10
2秒前
Owen应助波波采纳,获得10
2秒前
2秒前
3秒前
FashionBoy应助believe采纳,获得10
3秒前
丘比特应助卡尔采纳,获得10
3秒前
万诚信发布了新的文献求助10
3秒前
4秒前
Ava应助露似珍珠月似弓采纳,获得10
4秒前
4秒前
科研小白发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
哆啦的空间站应助gao采纳,获得10
6秒前
粗心的电源完成签到,获得积分10
6秒前
7秒前
guo发布了新的文献求助10
7秒前
桐桐应助想人陪采纳,获得10
8秒前
8秒前
思源应助看文献了采纳,获得10
8秒前
10秒前
大牛关注了科研通微信公众号
10秒前
bkagyin应助快来看文献采纳,获得10
10秒前
kk发布了新的文献求助10
10秒前
暴躁的梦发布了新的文献求助10
11秒前
wll完成签到,获得积分20
11秒前
11秒前
vikoel完成签到,获得积分10
11秒前
善学以致用应助霸霸采纳,获得10
11秒前
11秒前
露似珍珠月似弓完成签到,获得积分10
11秒前
12秒前
12秒前
yys完成签到,获得积分10
14秒前
共享精神应助十谦先采纳,获得10
14秒前
田様应助eyre采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641