Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy

主成分分析 偏最小二乘回归 均方误差 人工神经网络 多元自适应回归样条 火星探测计划 主成分回归 校准 数学 生物系统 人工智能 模式识别(心理学) 统计 回归 计算机科学 非参数回归 天文 生物 物理
作者
Mina Sadrara,Mohammadreza Khanmohammadi Khorrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:300: 122944-122944 被引量:1
标识
DOI:10.1016/j.saa.2023.122944
摘要

Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麒煜发布了新的文献求助10
1秒前
1秒前
2秒前
万老头发布了新的文献求助10
3秒前
李先生发布了新的文献求助10
3秒前
517完成签到 ,获得积分10
3秒前
JamesPei应助猪猪侠采纳,获得10
3秒前
3秒前
Attiswer完成签到,获得积分10
4秒前
善学以致用应助企鹅采纳,获得10
4秒前
桐桐应助marketing采纳,获得10
5秒前
5秒前
5秒前
漂亮夏兰发布了新的文献求助10
5秒前
哈基米应助迷人代珊采纳,获得20
5秒前
6秒前
wanci应助努力采纳,获得10
6秒前
舒心妙菱完成签到,获得积分10
6秒前
天阳发布了新的文献求助10
6秒前
ice完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
汉堡包应助哲轩采纳,获得10
8秒前
8秒前
砺行应助无可匹敌的饭量采纳,获得10
9秒前
9秒前
sky发布了新的文献求助10
10秒前
ho应助VDC采纳,获得10
10秒前
sapphire发布了新的文献求助10
11秒前
研友_LJbNdL发布了新的文献求助10
11秒前
疯狂的炒米粉完成签到,获得积分10
11秒前
2633148059完成签到,获得积分10
11秒前
12秒前
青云完成签到,获得积分20
12秒前
yanliu95发布了新的文献求助10
13秒前
彭于晏应助keyanyan采纳,获得10
13秒前
Chiwen发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353034
求助须知:如何正确求助?哪些是违规求助? 4485635
关于积分的说明 13964011
捐赠科研通 4385833
什么是DOI,文献DOI怎么找? 2409586
邀请新用户注册赠送积分活动 1401915
关于科研通互助平台的介绍 1375639