Principal component analysis–multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy

主成分分析 偏最小二乘回归 均方误差 人工神经网络 多元自适应回归样条 火星探测计划 主成分回归 校准 数学 生物系统 人工智能 模式识别(心理学) 统计 回归 计算机科学 非参数回归 天文 生物 物理
作者
Mina Sadrara,Mohammadreza Khanmohammadi Khorrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:300: 122944-122944 被引量:1
标识
DOI:10.1016/j.saa.2023.122944
摘要

Oxidative desulfurization (ODS) of diesel fuels has received attention in recent years due to mild working conditions and effective removal of the aromatic sulfur compounds. There is a need for rapid, accurate, and reproducible analytical tools to monitor the performance of ODS systems. During the ODS process, sulfur compounds are oxidized to their corresponding sulfones which are easily removed by extraction in polar solvents. The amount of extracted sulfones is a reliable indicator of ODS performance, showing both oxidation and extraction efficiency. This article studies the ability of a non-parametric regression algorithm, principal component analysis-multivariate adaptive regression splines (PCA-MARS) as an alternative to back propagation artificial neural network (BP-ANN) to predict the concentration of sulfone removed during the ODS process. Using PCA, variables were compressed to identify principal components (PCs) that best described the data matrix, and the scores of such PCs were used as input variables for the MARS and ANN algorithms. The coefficient of determination in calibration (R2c), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were calculated for PCA-BP-ANN (R2c=0.9913, RMSEC=2.4206 and RMSEP=5.7124) and PCA-MARS (R2c=0.9841, RMSEC=2.7934 and RMSEP=5.8476) models and were compared with the genetic algorithm partial least squares (GA-PLS) (R2c=0.9472, RMSEC=5.5226 and RMSEP=9.6417) and as the results reveal, both methods are better than GA-PLS in terms of prediction accuracy. The proposed PCA-MARS and PCA-BP-ANN models are robust models that provide similar predictions and can be effectively used to predict sulfone containing samples. The MARS algorithm builds a flexible model using simpler linear regression and is computationally more efficient than BPNN due to data-driven stepwise search, addition, and pruning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助无wu采纳,获得10
刚刚
萧萧完成签到,获得积分0
刚刚
1秒前
1秒前
2秒前
深情安青应助机智跳跳糖采纳,获得10
2秒前
LCC发布了新的文献求助10
2秒前
hhllhh发布了新的文献求助10
3秒前
3秒前
3秒前
Zyw关注了科研通微信公众号
4秒前
5秒前
微光熠发布了新的文献求助10
5秒前
称心的水蓉完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
nature榜上发布了新的文献求助10
5秒前
Owen应助人类不宜搞科研采纳,获得10
5秒前
ww完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
于瑜与余发布了新的文献求助10
8秒前
8秒前
元谷雪发布了新的文献求助10
8秒前
9秒前
10秒前
自然听兰发布了新的文献求助10
10秒前
Jerryis发布了新的文献求助10
11秒前
12秒前
共享精神应助李耀京采纳,获得30
12秒前
12秒前
黄诗淇完成签到,获得积分10
13秒前
13秒前
123456发布了新的文献求助10
13秒前
13秒前
漱泉枕石发布了新的文献求助10
14秒前
14秒前
Lucas应助俊逸的三毒采纳,获得10
14秒前
有风的地方完成签到 ,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277