亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive variational autoencoding generative adversarial networks for rolling bearing fault diagnosis

断层(地质) 计算机科学 对抗制 生成语法 人工智能 机器学习 钥匙(锁) 生成对抗网络 数据挖掘 模式识别(心理学) 深度学习 计算机安全 地质学 地震学
作者
Xin Wang,Hongkai Jiang,Zhenghong Wu,Qiao Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 102027-102027 被引量:87
标识
DOI:10.1016/j.aei.2023.102027
摘要

The fault diagnosis of rolling bearings with imbalanced data has always been a particularly challenging problem. With data augmentation methods to complement the imbalanced dataset, the effectiveness of diagnosis will be improved significantly. In this paper, adaptive variational autoencoding generative adversarial networks (AVAEGAN) are developed for data augmentation and applied to fault diagnosis. Firstly, a new adaptive network is constructed so that the network adaptively extracts the key features from data to improve the training performance of the network. Secondly, the adaptive loss calculation method is designed to creatively realize the interaction between the loss of the model and the gradient of the function in the network, forming an adaptive balancing mechanism for stable model training. Finally, an adaptive optimal data seeker is proposed so that the model always finds the optimal data in the generated data for augmenting the dataset and enhancing the performance of fault diagnosis. In addition, multi-class comparison experiments are conducted to verify the effectiveness of the method. The results suggest that AVAEGAN outperforms other augmentation methods when used for fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj发布了新的文献求助10
2秒前
Owen应助Julia采纳,获得10
15秒前
CodeCraft应助mx采纳,获得10
20秒前
bkagyin应助丽优采纳,获得10
20秒前
24秒前
丽优发布了新的文献求助10
30秒前
CipherSage应助丽优采纳,获得10
36秒前
39秒前
41秒前
丽优发布了新的文献求助10
44秒前
hhh完成签到 ,获得积分10
1分钟前
xinni完成签到,获得积分10
1分钟前
梁梁完成签到 ,获得积分10
1分钟前
浮游应助xinni采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ZanE完成签到,获得积分10
1分钟前
浮游应助lingyun4592采纳,获得10
1分钟前
陀螺发布了新的文献求助20
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
1分钟前
Julia发布了新的文献求助10
1分钟前
1分钟前
1分钟前
mx发布了新的文献求助10
1分钟前
2分钟前
lyw发布了新的文献求助10
2分钟前
传奇3应助无问采纳,获得10
2分钟前
完美世界应助lyw采纳,获得10
2分钟前
2分钟前
优秀完成签到 ,获得积分10
2分钟前
乐乐应助陀螺采纳,获得10
2分钟前
2分钟前
小蘑菇应助知性的无春采纳,获得10
2分钟前
斯文败类应助丽优采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426457
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171843
捐赠科研通 4457954
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435785
关于科研通互助平台的介绍 1413229