Federated Many-Task Bayesian Optimization

计算机科学 贝叶斯优化 超参数 最优化问题 水准点(测量) 任务(项目管理) 高斯过程 贝叶斯概率 机器学习 独立同分布随机变量 黑匣子 数据挖掘 人工智能 高斯分布 算法 随机变量 物理 经济 统计 量子力学 管理 地理 数学 大地测量学
作者
Hangyu Zhu,Xilu Wang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tevc.2023.3279775
摘要

Bayesian optimization is a powerful surrogate-assisted algorithm for solving expensive black-box optimization problems. While Bayesian optimization was developed for centralized optimization, the availability of massive distributed data has attracted increased interests in exploring federated Bayesian optimization that can use data on multiple clients without leaking the raw data. However, existing federated Bayesian optimization (FBO) approaches assume that either all clients jointly solve the same optimization task, or only one client solves one target optimization task by transferring knowledge from others in a federated way, making them unsuited for many real-world applications. In this paper, we consider FBO for the scenario where multiple related local black-box tasks associated with different clients are jointly optimized by sharing knowledge between tasks without leaking the data privacy. An efficient federated many-task Bayesian optimization framework is proposed to address not independent and identically distributed (non-IID) data while protecting the data privacy in the federated setting. A novel federated knowledge transfer paradigm is developed for dynamic many-task model aggregation according to a dissimilarity matrix. The dissimilarity is measured based on the rank of the predictions and only the hyperparameters in the local Gaussian process models are shared. In addition, a federated ensemble acquisition function is constructed by integrating the predictions of two surrogates using the global and local hyperparameters, respectively, to effectively search for the optimal solution. Experimental results show that our proposed method has reliable performance on both benchmark problems and a real machine learning problem also in the presence of non-IID data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木榕城发布了新的文献求助10
刚刚
鹿茸发布了新的文献求助10
刚刚
小乌龟发布了新的文献求助10
1秒前
bkagyin应助登山人采纳,获得10
1秒前
思源应助懒洋洋采纳,获得10
1秒前
科研通AI2S应助Summer采纳,获得10
2秒前
Jenny发布了新的文献求助20
2秒前
2秒前
3秒前
Paralloria发布了新的文献求助30
3秒前
大个应助123采纳,获得10
4秒前
俊逸的曼岚完成签到,获得积分10
4秒前
Asdaf完成签到,获得积分10
4秒前
5秒前
凯凯发布了新的文献求助10
5秒前
5秒前
隐形曼青应助kylin采纳,获得10
5秒前
redglo完成签到,获得积分10
7秒前
JK丶LOVE完成签到,获得积分10
8秒前
研友_08okB8完成签到,获得积分10
8秒前
Akim应助水水采纳,获得10
8秒前
8秒前
zyj完成签到,获得积分10
8秒前
yyuuddii发布了新的文献求助30
9秒前
10秒前
温暖乐曲发布了新的文献求助10
10秒前
11秒前
mmol发布了新的文献求助10
11秒前
12秒前
12秒前
Sunshine发布了新的文献求助10
13秒前
马大翔应助Phucgialam采纳,获得10
13秒前
14秒前
Yyyy完成签到,获得积分10
14秒前
清脆糖豆完成签到,获得积分10
15秒前
小乌龟完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
无限的丹南完成签到,获得积分10
18秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129419
求助须知:如何正确求助?哪些是违规求助? 2780198
关于积分的说明 7746898
捐赠科研通 2435421
什么是DOI,文献DOI怎么找? 1294067
科研通“疑难数据库(出版商)”最低求助积分说明 623580
版权声明 600554