亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Many-Task Bayesian Optimization

计算机科学 贝叶斯优化 超参数 最优化问题 水准点(测量) 任务(项目管理) 高斯过程 贝叶斯概率 机器学习 独立同分布随机变量 黑匣子 数据挖掘 人工智能 高斯分布 算法 随机变量 物理 经济 统计 量子力学 管理 地理 数学 大地测量学
作者
Hangyu Zhu,Xilu Wang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 980-993 被引量:6
标识
DOI:10.1109/tevc.2023.3279775
摘要

Bayesian optimization is a powerful surrogate-assisted algorithm for solving expensive black-box optimization problems. While Bayesian optimization was developed for centralized optimization, the availability of massive distributed data has attracted increased interests in exploring federated Bayesian optimization that can use data on multiple clients without leaking the raw data. However, existing federated Bayesian optimization (FBO) approaches assume that either all clients jointly solve the same optimization task, or only one client solves one target optimization task by transferring knowledge from others in a federated way, making them unsuited for many real-world applications. In this paper, we consider FBO for the scenario where multiple related local black-box tasks associated with different clients are jointly optimized by sharing knowledge between tasks without leaking the data privacy. An efficient federated many-task Bayesian optimization framework is proposed to address not independent and identically distributed (non-IID) data while protecting the data privacy in the federated setting. A novel federated knowledge transfer paradigm is developed for dynamic many-task model aggregation according to a dissimilarity matrix. The dissimilarity is measured based on the rank of the predictions and only the hyperparameters in the local Gaussian process models are shared. In addition, a federated ensemble acquisition function is constructed by integrating the predictions of two surrogates using the global and local hyperparameters, respectively, to effectively search for the optimal solution. Experimental results show that our proposed method has reliable performance on both benchmark problems and a real machine learning problem also in the presence of non-IID data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
呆呆不呆Zz完成签到,获得积分10
8秒前
令宏发布了新的文献求助30
9秒前
10秒前
13秒前
14秒前
16秒前
Dritsw应助罗舒采纳,获得10
24秒前
JamesPei应助霸气的金鱼采纳,获得10
29秒前
31秒前
儒雅老太发布了新的文献求助10
31秒前
科研通AI5应助feifei采纳,获得10
34秒前
39秒前
儒雅老太完成签到,获得积分10
40秒前
华仔应助Maple采纳,获得10
46秒前
热情的寄瑶完成签到 ,获得积分10
1分钟前
orixero应助罗舒采纳,获得30
1分钟前
Shun完成签到 ,获得积分10
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
xhy完成签到 ,获得积分10
1分钟前
小神仙完成签到 ,获得积分10
1分钟前
Ephemerality完成签到 ,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
罗舒发布了新的文献求助30
1分钟前
1分钟前
eritinn发布了新的文献求助10
2分钟前
eritinn完成签到,获得积分10
2分钟前
ljl86400完成签到,获得积分10
2分钟前
2分钟前
Jasper应助Heng采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Nakjeong完成签到 ,获得积分10
2分钟前
xuezha发布了新的文献求助10
2分钟前
郭燥发布了新的文献求助10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214