Activation of persulfate by iron‐loaded soybean straw biochar for efficient degradation of dye contaminants: Synthesis, performance, and mechanism

过硫酸盐 生物炭 化学 催化作用 橙色G 激进的 过硫酸钠 铁质 氧化铁 单线态氧 核化学 无机化学 热解 氧气 有机化学
作者
Yang Yue,Junfeng Zhu,Qing Zeng,Mengmeng Yan,Weichun Gao,Jinling Li,Xiangchu Zeng,Guanghua Zhang
出处
期刊:Environmental progress & sustainable energy [Wiley]
卷期号:42 (5) 被引量:2
标识
DOI:10.1002/ep.14190
摘要

Abstract Biochar loaded with metal ions has been widely used to activate persulfate to degrade organic pollutants. However, the preparation conditions of catalysts are always controversial. In this study, the co‐heating conditions of soybean straw with high carbon and low nitrogen and nano‐iron oxide were systematically discussed by response surface method, and an efficient catalyst (Fe@BC) was obtained. Fe@BC can effectively activate sodium persulfate (PS) and degrade three synthetic azo dyes (Methyl orange (MO), Amino black 10B (AB10B), and Orange II) and rhodamine B (RhB). Under the optimum conditions, the removal rate of total organic carbon of these four dyes reached 41.1%–89.8% and the final degradation rate could reach 100%. The physicochemical properties of Fe@BC were studied by SEM, BET, XRD, XPS and TGA. The results revealed that the specific surface area of Fe@BC was 195.6m 2 /g. Further, reducing iron oxide by C generated C 0.09 Fe 1.91 and zero‐valent iron. Free radical scavenging experiments and electron paramagnetic resonance (EPR) measurements showed that the main reactive oxide species (ROS) in the Fe@BC/PS system were hydroxyl radicals (•OH) and singlet oxygen ( 1 O 2 ). Finally, Several Fe@BC modification systems were explored, the optimum pH of Fe@BC/PS system was analyzed, and the effects of Fe@BC and PS dosage on degradation performance were also studied. This study provides a scientific basis for the production of efficient catalysts and biochar energy, and an effective treatment scheme for printing and dyeing wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxftx完成签到,获得积分10
刚刚
刚刚
开心妍完成签到 ,获得积分10
刚刚
silentJeremy发布了新的文献求助10
1秒前
1秒前
kingwill应助Gilana采纳,获得20
1秒前
1秒前
一个左正蹬完成签到,获得积分10
2秒前
三桥完成签到,获得积分10
2秒前
3秒前
supertkeb完成签到,获得积分10
3秒前
ZY完成签到,获得积分10
4秒前
庄怀逸完成签到 ,获得积分10
5秒前
wenwen完成签到,获得积分10
5秒前
6秒前
fuguier发布了新的文献求助10
6秒前
山水完成签到,获得积分10
7秒前
7秒前
木木杉完成签到 ,获得积分10
7秒前
卓涵柏发布了新的文献求助10
7秒前
聪慧咖啡豆完成签到,获得积分10
8秒前
流白完成签到,获得积分10
9秒前
不想上班了完成签到,获得积分10
10秒前
酷炫橘子完成签到,获得积分10
10秒前
SYLH应助Gilana采纳,获得10
10秒前
肃肃其羽完成签到 ,获得积分10
10秒前
Libeau完成签到,获得积分10
11秒前
11秒前
英俊的铭应助silentJeremy采纳,获得30
11秒前
宇文青寒完成签到,获得积分10
12秒前
13秒前
coco完成签到,获得积分10
14秒前
无花果粒橙完成签到,获得积分10
15秒前
文小杰完成签到,获得积分10
16秒前
阿九发布了新的文献求助10
16秒前
Neonoes完成签到,获得积分10
16秒前
苹果山芙完成签到,获得积分10
16秒前
小白龙发布了新的文献求助10
17秒前
田様应助研友_89N27L采纳,获得10
17秒前
liushoujia完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890