Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 电解质 物理化学
作者
Cuibo Liu,Yongmeng Wu,Bo‐Hang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:30
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助mashu采纳,获得10
刚刚
ynchendt完成签到,获得积分10
刚刚
heart发布了新的文献求助30
1秒前
1117发布了新的文献求助10
1秒前
赵赵a应助sue采纳,获得10
2秒前
ww发布了新的文献求助10
2秒前
加菲丰丰应助优雅战斗机采纳,获得20
3秒前
cc发布了新的文献求助10
3秒前
3秒前
3秒前
晓舟完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
香查朵完成签到,获得积分10
5秒前
想睡觉亦寻关注了科研通微信公众号
5秒前
收声完成签到,获得积分10
6秒前
溪陆完成签到,获得积分10
6秒前
媛媛子完成签到 ,获得积分20
6秒前
8秒前
guoguo1119发布了新的文献求助10
8秒前
nanarthur完成签到,获得积分10
9秒前
任性土豆发布了新的文献求助10
9秒前
10秒前
研友_VZG7GZ应助LeiX采纳,获得10
10秒前
无心的香发布了新的文献求助10
10秒前
英姑应助yanxun采纳,获得10
10秒前
11秒前
Jasper应助缥缈的若山采纳,获得10
11秒前
危机的乐双完成签到,获得积分20
11秒前
田様应助zzz采纳,获得10
11秒前
ynchendt发布了新的文献求助30
12秒前
852应助贤惠的白开水采纳,获得10
12秒前
12秒前
Akim应助heart采纳,获得10
12秒前
宫冷雁发布了新的文献求助20
14秒前
悠悠发布了新的文献求助10
15秒前
简诞完成签到,获得积分10
16秒前
17秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706