Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 物理化学 电解质
作者
Cuibo Liu,Yongmeng Wu,Bo‐Hang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:52
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助结实星星采纳,获得10
刚刚
研友_Y59685发布了新的文献求助10
刚刚
qiaokizhang完成签到,获得积分10
2秒前
潘潘完成签到 ,获得积分10
2秒前
科研通AI5应助痴情的博超采纳,获得10
2秒前
娃哈哈完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
3秒前
4秒前
爆米花应助zyyy采纳,获得30
4秒前
星辰大海应助yangmiemie采纳,获得10
5秒前
酷波er应助sure采纳,获得10
5秒前
Xiaoyu发布了新的文献求助10
5秒前
小宇发布了新的文献求助30
6秒前
6秒前
杨树完成签到 ,获得积分10
6秒前
今日干饭完成签到,获得积分10
7秒前
简单的张哈哈完成签到,获得积分10
8秒前
xlll发布了新的文献求助20
8秒前
lip完成签到,获得积分10
9秒前
从容万恶发布了新的文献求助10
9秒前
只A不B应助xxz9199采纳,获得30
10秒前
一九九七完成签到,获得积分20
10秒前
lily发布了新的文献求助10
10秒前
10秒前
bkagyin应助nmqiang采纳,获得10
10秒前
111驳回了打打应助
11秒前
乐乐应助杨老师采纳,获得10
11秒前
13秒前
传奇3应助结实星星采纳,获得10
13秒前
从容万恶完成签到,获得积分10
14秒前
Kim_Hou完成签到,获得积分10
15秒前
科研通AI5应助ky一下采纳,获得10
15秒前
娃哈哈发布了新的文献求助10
16秒前
懵懂的冰凡完成签到 ,获得积分10
17秒前
未知发布了新的文献求助10
17秒前
18秒前
米兰达完成签到 ,获得积分0
19秒前
竹筏过海应助wanli采纳,获得30
20秒前
猪猪hero发布了新的文献求助10
20秒前
doudou完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271871
关于积分的说明 9973962
捐赠科研通 2987190
什么是DOI,文献DOI怎么找? 1638782
邀请新用户注册赠送积分活动 778295
科研通“疑难数据库(出版商)”最低求助积分说明 747549