Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 电解质 物理化学
作者
Cuibo Liu,Yongmeng Wu,Bo‐Hang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:82
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇涯应助一一采纳,获得10
刚刚
gnufgg完成签到,获得积分10
刚刚
刚刚
ethan完成签到,获得积分20
刚刚
英姑应助木槿采纳,获得10
1秒前
hh完成签到,获得积分10
1秒前
邓111111完成签到 ,获得积分10
1秒前
秋秋儿发布了新的文献求助10
2秒前
2秒前
2秒前
EWW完成签到,获得积分10
3秒前
善良的雨筠完成签到,获得积分10
3秒前
音吹完成签到,获得积分10
3秒前
CipherSage应助陈住气采纳,获得10
3秒前
4秒前
kelakola完成签到,获得积分10
4秒前
4秒前
斯文败类应助咖褐采纳,获得10
4秒前
hh发布了新的文献求助10
5秒前
科研通AI6应助Albert采纳,获得10
5秒前
wanci应助勤恳青亦采纳,获得10
5秒前
LL发布了新的文献求助10
5秒前
6秒前
笑忘书发布了新的文献求助10
6秒前
王多鱼发布了新的文献求助10
6秒前
HYH完成签到,获得积分10
7秒前
7秒前
7秒前
18863933521发布了新的文献求助10
7秒前
吴彬完成签到,获得积分10
8秒前
霸气的凝竹完成签到,获得积分10
8秒前
9秒前
Sharif318发布了新的文献求助50
9秒前
18781913856完成签到 ,获得积分10
9秒前
热情依白发布了新的文献求助10
9秒前
科研通AI6应助饶天源采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
田様应助齐平露采纳,获得10
9秒前
桐桐应助hahahapan采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939