Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 物理化学 电解质
作者
Cuibo Liu,Yongmeng Wu,Bo‐Hang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:52
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuchaoJia发布了新的文献求助10
2秒前
杨沛儒发布了新的文献求助10
2秒前
小铃铛完成签到,获得积分10
2秒前
王九八发布了新的文献求助10
3秒前
彭于晏应助kento采纳,获得100
4秒前
大脑袋应助Lucas采纳,获得30
4秒前
4秒前
4秒前
李三金嘻嘻完成签到,获得积分10
5秒前
reedleaf完成签到,获得积分10
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
6秒前
慕青应助杨沛儒采纳,获得10
7秒前
乐乐应助武六七采纳,获得10
7秒前
Admsen发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助z11采纳,获得10
8秒前
啦啦完成签到 ,获得积分10
9秒前
9秒前
黑黑发布了新的文献求助10
9秒前
李爱国应助暮然采纳,获得10
9秒前
袁睿韬应助李茶嘚采纳,获得10
10秒前
10秒前
Chen发布了新的文献求助10
10秒前
11秒前
11秒前
Junehe完成签到,获得积分10
11秒前
xiaojingbao发布了新的文献求助10
12秒前
疚祠发布了新的文献求助10
12秒前
Hello应助猪猪hero采纳,获得10
12秒前
sbc完成签到,获得积分20
13秒前
安详三问发布了新的文献求助10
14秒前
小猪跳水发布了新的文献求助10
14秒前
纯真保温杯完成签到 ,获得积分10
16秒前
jacs111发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352